
University of Belgrade
Faculty of Organizational Sciences

Center for Business Decision Making

WHIBO Developer guide

Belgrade, November 2013

Introduction

WhiBo is a RapidMiner (Mierswa et al. 2006) plug-in for “white-box”
component based design of decision tree algorithms for classification and
evaluation of these algorithms and their parts. It is intended to be used by
typical end users, research scientists and algorithm developers. The main idea
of WhiBo is to offer standardized components for algorithm design which will
enable simple design and performance testing, easy extension of the
component repository and creation of new generic algorithms. Currently,
WhiBo provides one generic algorithm, a graphical interface and a component
repository for design of decision trees for classification. A framework for
performance testing is implemented in WhiBo as well. WhBo plug-in and
source code, is available from www.whibo.fon.rs. Source code is documented
thoroughly and accessible from the web site through the API documentation.
The web site also provides installation guide and number of tutorials for end
users, algorithm developers, and research scientists.

Black-box approach

Data mining algorithms are usually implemented in a “black-box” manner. This
means that the user defines input data and parameters (if needed) for the
algorithm, and the algorithm produces a model. The user has no other
possibilities to modify the algorithm to better adjust to data. The “black-box”
approach is satisfying for most users. On the other hand, implementation of
algorithms as a “black-box” makes it more difficult for algorithm designers who
want to use parts of the existing algorithm to create new algorithms. The
structure of black box algorithms demands reimplementation of algorithms and
their parts from the scratch. “Black-box” implemented algorithms are harder to
evaluate and analyze, because it is not clear which part of the algorithm has
influence on overall algorithm performance.

http://www.whibo.fon.rs/

White-Box approach

The “white-box” approach allows the user to define parameters, and inputs (as
in black-box algorithms) of an algorithm, but also the building blocks (i.e.
components) of the algorithm. These components are solutions for typical sub-
problems consistently encountered in the process of constructing the
appropriate model for the data at hand. This way, algorithmic solution
becomes more data and user driven, since it enables the users to intelligently
select components of the algorithm which best address the problems of the
specific data. Moreover, good ideas from algorithms are saved within
components, so they can be used in other algorithms.

White-box approach offers several advances in comparison with black box
algorithms (Sonnenburg et al, 2007).

 Combining advantages of various algorithms,

 Comparing algorithms in more details,

 Building on existing resources with less re-implementation,

 Easier “bug” detection on the level of components,

 Collaborative emergence of standards.

WhiBo component repository and Generic decision
tree (GDT) algorithm

WhiBo includes a reusable component repository for design of decision tree
algorithms. These components were extracted from “black-box” algorithms:

 ID3 (Quinlan JR, 1986),

 C4.5 (Quinlan JR, 1993),

 CART (Breiman et al, 1984),

 CHAID (Kass GV, 1980)

and improvements (distance measure identified in (Mantaras, 1991).
Description of analyzed algorithms and partial improvements could be found in
Appendix A.

Sub-problems and solutions (reusable components)

In WhiBo algorithms are built by choosing building blocks (i.e. reusable
components - RCs) for each sub-problem. The problem of building decision tree
model is divided into sub-problems that are generalized algorithm structures
with the same input and output structure identified in all analyzed algorithms.
Every sub-problem with defined inputs and outputs can be solved in many
ways, i.e. with various a reusable components (RCs). That means that every RC
solves a specific sub-problem which has the same I/O.

Table 1 shows identified sub-problems and components with their
corresponding I/O that are currently implemented in WhiBo.

Sub-problem Reusable component Input Output

Remove
insignificant
attributes

F TEST (numerical
attributes)

CHI SQUARE TEST
(categorical attributes)

Dataset in
current node

Dataset in current
node (reduced)

Create split
(Numerical)

BINARY

Dataset in
current node

A split candidate
Create split

(Categorical)

BINARY

MULTIWAY

SIGNIFICANT

Evaluate split

CHI SQUARE

A split
candidate

The best split in
current node

INFORMATION GAIN

GAIN RATIO

GINI

DISTANCE MEASURE

Stop criteria
MAXIMAL TREE DEPTH

Current tree
model

Signal for stopping
tree growth in
current node

MINIMAL NODE SIZE

Prune tree
PESSIMISTIC ERROR

PRUNING (PEP)
Current tree

model
Pruned tree model

MIN LEAF SIZE (MLS)

Table 1 - Sub-problems, reusable components with standardized I/O for Generic decision
tree algorithm

Sub-problems and reusable components implemented in Whibo are described
according to Tracz (1990) in Appendix B.

Generic decision tree (GDT) structure

The GDT structure proposed in WhiBo is shown on Figure 1. For sub-problems
that are bolded it is necessary to define a sub-problem, while for other sub-
problems RCs are optional to use. “Create split” (numerical, and categorical)
and “Evaluate split” RCs are necessary for decision tree growth. Besides that,
there are no restrictions for combinations of RCs.

Create split

(Numerical)

Evaluate split

Create split

(Categorical)

Prune tree

Remove insignificant

attributes

Stop criteria

For every node

Figure 1 - Generic decision tree (GDT) algorithm

The proposed GDT structure and component repository enables:

 Reconstruction of the original algorithms in the parts that were analyzed.
 Creation of hybrid algorithms with components.
 Extension of the component repository by analyzing new algorithms or

partial improvements which can be incorporated in sub-problems with
the same input-output structure.

 Definition of new sub-problems which can be incorporated in GDT
structure.

Extending WHIBO

Input and output are well defined for every Sub-problem, and these sub-
problems are implemented as abstract classes in WhiBo. Reusable components
are concrete classes where the logic is implemented. Sub-problems define
standardized input and output for every reusable component, extended from
sub-problem.

WhiBo is implemented as an extendable environment in the Java programming
language that enables the implementation of new RCs and sub-problems.
Extending the GDT can be done by:

 Adding new RCs.

 Adding new sub-problems in the existing GDT algorithm.

The GDT algorithm is implemented independently of RCs. So extending the GDT
algorithm with a new RC asks for no changes in the algorithm flow. On the
other hand, when extending WhiBo with a new sub-problem changes are
needed in the GDT algorithm.

Adding a new RC is accomplished in two steps. The first step is to define a new
class for the RC. For that class the user has to define parameters and
implement the RC logic. The inputs and outputs of the RC are predefined by the
sub-problem the RC belongs to. The necessary changes are shown in bold at
Figure 55. The second step is to register the new RC for a sub-problem as
shown in bold at Figure 56.

If these two steps are done correctly the user will see his own component in
the central panel of WhiBo GUI (Figure 4), and can use the GDT with the new
RC.

Adding a new sub-problem is achieved in three steps. The first step is to create
an interface for the sub-problem, and define inputs and outputs for the sub-
problem as shown in bold at Figure 57.
The second step is to register the new sub-problem to enable using it through
GUI as shown in bold at Figure 58.

Finally, the user has to modify the existing GDT algorithm to utilize the newly
defined sub-problem. WhiBo is not only intended for use with decision-tree
algorithms, but can be extended to other component-based machine learning
algorithms.

package rs.fon.WhiBo.GDT.component.splitEvaluation;
public class MySplitEvaluation
 extends AbstractSplitEvaluation {

@Parameter(defaultValue="0.05", minValue ="0",
 maxValue="1")
 private Double Alpha_Value;

 @Override
 public double evaluate(SplittedExampleSet
exampleSet)
 {
 /*
 user implementation
 for candidate split evaluation
 */
 return splitEvaluation;
 }
}

Figure 2 - Implementing a new RC

public class SplitEvaluation implements Subproblem {
 …
 PrivateString[] availableImplementationClassNames
=
 {
 GainRatio.class.getName(),
 GiniIndex.class.getName(),
 InformationGain.class.getName(),
 DistanceMeasure.class.getName(),
 ChiSquare_FTest.class.getName(),
 MySplitEvaluation.class.getName();
 }
};

Figure 3 - Registering the new RC for a sub-problem

package
rs.fon.WhiBo.GDT.component.newSubproblem;
public interface newSubproblem {
 public output1 newSubproblemMethod1(inputs1);
 public output2 newSubproblemMethod1(inputs2);
}

Figure 4 - Defining a new sub-problem

WhiBo can be found at the following web page
http://code.google.com/p/WhiBo/. Data mining and machine learning
researchers are invited to join our efforts to exchange components of decision
trees and other machine learning algorithms in an open way based on the
proposed WhiBo platform, as to establish a standard for interchange of
components among decision tree based classification algorithms, as well as
other machine learning algorithms.

Package rs.fon.WhiBo.GDT.problem;
….
public class GenericTreeProblemBuilder {

 public Problem buildProcess() {
 …
 Subproblem s2 = new PossibleSplit();
 Subproblem s3 = new Split Evaluation();
 …
 Subproblem s7 = new UserDefinedSubproblem();
 List”Subproblem” subproblems;
 subproblems.add(s1);
 subproblems.add(s2);
 …
 subproblems.add(s7);
 Problem process = new GenericTreeProblem();
 process.setProcessSteps(steps);
 return process;
 }
….
}

Figure 5 - Registering the new sub-problem

http://code.google.com/p/WhiBo/

Developer guide
In order to extend WhiBo there are several steps which needs to be done.

1. Since WhiBo is written in Java programming language, first step is to
download Eclipse (http://www.eclipse.org/downloads/).

2. When Eclipse is downloaded subversion support needs to be installed.

We recommend Subclipse, which can be found on
http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA.
Installation of Subclipse is done in several steps:

1. Open Eclipse.
2. Select the Help > Install New Software menu option.

Figure 6 - Installation of Subclipse

3. Click the Add button and set the Location field on
http://subclipse.tigris.org/update_1.8.x, and set name for
example Subclipse. Then click OK button.

http://www.eclipse.org/downloads/
http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA
http://subclipse.tigris.org/update_1.8.x

Figure 7 - Adding Subclipse repository

4. Select Subclipse components and click Next.

5. Select the I accept the terms of the license agreements radio

button.

6. Click the Finish button.

7. Click Yes to restart Eclipse.

Eclipse will now have SVN Repository Exploring panel. If Eclipse don’t show this
panel at first it can be added by clicking Windows->Open Perspective-
>Other…, then selecting SVN Repository Exploring option and click OK.

3. Checkout of WhiBo project is done in several steps:

1. Right Click a repository in the SVN Repositories panel, select New,
then Repository location….

Figure 8 - Adding new repository location

2. Insert https://whibo.googlecode.com/svn/trunk/ in URL text box.

Figure 9 - Adding WhiBo repository location

3. Click Finish button.

4. Right click on WhiBo repository in SVN Repositories panel.

5. Select the Checkout… option.

https://whibo.googlecode.com/svn/trunk/

Figure 10 – Checkout of WhiBo project (1)

6. Select the Check out as a project in the workspace option and
enter a project name.

Figure 11 – Checkout of WhiBo project (2)

7. Select workspace where you wish to save project.

Figure 12 - Selecting workspace location

8. Click Finish button.

9. WhiBo project will show up in Package Explorer panel.

4. Similarly, RapidMiner project needs to be imported as project. URL for

RapidMiner project is http://svn.code.sf.net/p/rapidminer/code.

Currently, RapidMiner version is called Unuk.

5. After importing RapidMiner project it needs to be referenced in WhiBo

project.

1. Right click on WhiBo project.

2. Click Properties.

3. Select Java Build Path on left side and then Project tab on central

panel.

http://svn.code.sf.net/p/rapidminer/code

Figure 13 - Importing RapidMiner project into WhiBo project

4. Click Add… button.

5. Select proper RapidMiner version.

6. Click OK button on Project Selection panel.

7. Click OK button on Properties panel.

Figure 14 - Selecting RapidMiner version

6. Open build.xml file of WhiBo project.

7. Make sure that fifth line contains proper RapidMiner project (in this case
it should be:
<property name="rm.dir" location="../RapidMiner_Unuk" />)

8. Right click on build.xml file and select Run as…->Ant Build. With this step
WhiBo extension is building in RapidMiner project, so it can be used in
that project.

Figure 15 - Building WhiBo project

9. Right click on WhiBo project and select Run as…->Java Application.

Figure 16 - Running WhiBo project

10. Select RapidMinerGUI class.

Figure 17 - Main class of WhiBo project

11. RapidMiner will start and WhiBo can be used.

For any information about configuration and extending WhiBo project you can
contact us on e-mails (which can be found on the website) or on forum (which
is also on the website).

http://whibo.fon.bg.ac.rs/joomla/index.php/whibo-project
http://whibo.fon.bg.ac.rs/joomla/index.php/forum

