University of Belgrade
Faculty of Organizational Sciences
Center for Business Decision Making

WHIBO User guide

Belgrade, November 2013

Introduction

WhiBo is a RapidMiner (Mierswa et al. 2006) plug-in for “white-box”
component based design of decision tree algorithms for classification and
evaluation of these algorithms and their parts. It is intended to be used by
typical end users, research scientists and algorithm developers. The main idea
of WhiBo is to offer standardized components for algorithm design which will
enable simple design and performance testing, easy extension of the
component repository and creation of new generic algorithms. Currently,
WhiBo provides one generic algorithm, a graphical interface and a component
repository for design of decision trees for classification. A framework for
performance testing is implemented in WhiBo as well. WhBo plug-in and
source code, is available from www.whibo.fon.rs. Source code is documented
thoroughly and accessible from the web site through the APl documentation.
The web site also provides installation guide and number of tutorials for end
users, algorithm developers, and research scientists.

Black-box approach

Data mining algorithms are usually implemented in a “black-box” manner. This
means that the user defines input data and parameters (if needed) for the
algorithm, and the algorithm produces a model. The user has no other
possibilities to modify the algorithm to better adjust to data. The “black-box”
approach is satisfying for most users. On the other hand, implementation of
algorithms as a “black-box” makes it more difficult for algorithm designers who
want to use parts of the existing algorithm to create new algorithms. The
structure of black box algorithms demands reimplementation of algorithms and
their parts from the scratch. “Black-box” implemented algorithms are harder to
evaluate and analyze, because it is not clear which part of the algorithm has
influence on overall algorithm performance.

http://www.whibo.fon.rs/

White-Box approach

The “white-box” approach allows the user to define parameters, and inputs (as
in black-box algorithms) of an algorithm, but also the building blocks (i.e.
components) of the algorithm. These components are solutions for typical sub-
problems consistently encountered in the process of constructing the
appropriate model for the data at hand. This way, algorithmic solution
becomes more data and user driven, since it enables the users to intelligently
select components of the algorithm which best address the problems of the
specific data. Moreover, good ideas from algorithms are saved within
components, so they can be used in other algorithms.

White-box approach offers several advances in comparison with black box
algorithms (Sonnenburg et al, 2007).

e Combining advantages of various algorithms,

e Comparing algorithms in more details,

¢ Building on existing resources with less re-implementation,
e Easier “bug” detection on the level of components,

e Collaborative emergence of standards.

WhiBo component repository and Generic decision
tree (GDT) algorithm

WhiBo includes a reusable component repository for design of decision tree
algorithms. These components were extracted from “black-box” algorithms:
ID3 (Quinlan JR, 1986),

C4.5 (Quinlan JR, 1993),

CART (Breiman et al, 1984),

CHAID (Kass GV, 1980)

and improvements (distance measure identified in (Mantaras, 1991).
Description of analyzed algorithms and partial improvements could be found in
Appendix A.

Sub-problems and solutions (reusable components)

In WhiBo algorithms are built by choosing building blocks (i.e. reusable
components - RCs) for each sub-problem. The problem of building decision tree
model is divided into sub-problems that are generalized algorithm structures
with the same input and output structure identified in all analyzed algorithms.
Every sub-problem with defined inputs and outputs can be solved in many
ways, i.e. with various a reusable components (RCs). That means that every RC
solves a specific sub-problem which has the same 1/0.

Table 1 shows identified sub-problems and components with their
corresponding I/0 that are currently implemented in WhiBo.
Sub-problem Reusable component Input Output
Remove F TEST (numerical
S attributes) Dataset in Dataset in current
insignificant
) CHI SQUARE TEST current node node (reduced)
attributes . .
(categorical attributes)
Create §p||t BINARY
(Numerical) Dataset i
Create split BINARY cur?eiﬁcencl)rc]je A split candidate
(Categorical) MULTIWAY
8 SIGNIFICANT
CHI SQUARE
INFORMATION GAIN A split The best split i
Evaluate split GAIN RATIO >p'l € best splitin
candidate current node
GINI
DISTANCE MEASURE
o MAXIMAL TREE DEPTH Current tree Signal for stop}?lng
Stop criteria tree growth in
MINIMAL NODE SIZE model
current node
PESSIMISTIC ERROR
Current tree
Prune tree PRUNING (PEP) model Pruned tree model
MIN LEAF SIZE (MLS)

Table 1 - Sub-problems, reusable components with standardized 1/0 for Generic decision
tree algorithm

Sub-problems and reusable components implemented in Whibo are described
according to Tracz (1990) in Appendix B.

Generic decision tree (GDT) structure

The GDT structure proposed in WhiBo is shown on Figure 1. For sub-problems
that are bolded it is necessary to define a sub-problem, while for other sub-
problems RCs are optional to use. “Create split” (numerical, and categorical)
and “Evaluate split” RCs are necessary for decision tree growth. Besides that,
there are no restrictions for combinations of RCs.

For every node

Remove insignificant

attributes
Create split Create split
(Numerical) (Categorical)

Evaluate split

Stop criteria

Prune tree

Figure 1 - Generic decision tree (GDT) algorithm

The proposed GDT structure and component repository enables:

e Reconstruction of the original algorithms in the parts that were analyzed.

e Creation of hybrid algorithms with components.

e Extension of the component repository by analyzing new algorithms or
partial improvements which can be incorporated in sub-problems with
the same input-output structure.

e Definition of new sub-problems which can be incorporated in GDT
structure.

WHIBO environment

WhiBo environment currently implements two operator groups:

e Trees — contains Generic decision tree operator and WhiBoGDT
Evolutionary Search operator.

e Validation — contains Custom cross validation with log and Significance
5X2 cross validation F-test operators.

[Meta Mining (1)
=&
=) Gdt Operators (2)
fy Generic decision tree
' WhiBo GDT Evolutionary Search
= G Validation (2)
%, ¥-validation with log
%, sx2 x-validation F-test v

Figure 2 - WhiBo operator group

|

WHIBO generic decision tree (GDT) operator GUI manual
WhiBo generic decision tree user interface contains four panels:

Left panel contains an array of buttons. Every button represents a concrete

sub-problem for a decision-tree algorithm design.

Central panel contains:
e Available RCs of selected sub-problem from the left panel.
e Available parameters (if available) for selected RCs.
e Buttons for including or disabling a RC from the current decision tree

structure.

Right panel shows current state of user designed algorithm (saved sub-
problems, RCs and parameters).

Top panel contains options for creating new, saving current or opening existing
generic decision tree algorithm.

=, Generic decision

CxN

[Mew Algorithm] [Save Algorithm] [Open Algaorithm]

Remove insignificant atributes

Create split

Evaluate split

Stop criteria

Frune tree

Component Name

Component Description

Select Components

=
o _ - "l Generic Decision Tree
Re A TR TS | Remove insignificant atributes

Remaove insignificant atributes

E) Create split
| BinaryNumerical
| MultiwayCategorical

(ChiSgquareTestCategorical =] Evaluate split

FTestMumerical

Parameters
ChiSquareTestCategorical

— || InformationGain
| Stop criteria
| Prune tree

Alpha_Value

Usze_Percentage_Instead

Percentage_Remove

[0.05

({Type: Double, Min:0.0, Max:0.5, Defauit:0.05)

[0

(Type: int, Min:0, Max:1, Defauit:0)

[04

(Type: Double, Min:0.0, M=x:1.0, Defauit:0.4)

Figure 3 - WhiBo GDT user interface for design of decision tree algorithms

General procedure for designing new algorithms:

Select sub-problem from left panel. When sub-problem is selected,
possible solutions (RCs) are shown in central panel.

Select RC (or components if multiple) for sub-problem from central
panel. If parameters for component(s) are available, they will be shown
in bottom part of central panel with their default values.

Click on save component button. Components and defined parameters
for selected sub-problem will be shown in the right panel as part of
current GDT algorithm.

This procedure should be repeated for every sub-problem (Create split
and Evaluate split sub-problem are basic for decision tree growth and
they must be defined. Definition of other sub-problems is optional).
When all sub-problems, components and parameters are defined
algorithm should be saved on file system (click on save button from
upper panel). By default algorithms are saved with .wba (white box
algorithm) extension.

WHIBO generic decision tree (GDT) evolutionary search
operator GUI manual

WHIBO generic decision tree (GDT) evolutionary search operator implements
genetic algorithm which selects reusable components defined in .ass (algorithm
search space) file.

Parameters:

Algorithm search space file location — location of .ass file
Parameters — list of parameters of genetic algorithm
Whba file path macro name — macro pointing to .wba file
Log file path — path where log file will be saved

Eg:'s; Farameters

S PR R B~
;) WhiBo GDT Evolutionary Search

| [oesmoree]

evolutionary parameters [[}} Edit List (10])...

wha file path macro name [wbaFiIeF’ath

log file path [D:ﬁ.lugEA.csv “ @ l

Figure 4 - Parameters panel for WhiBo GDT Evolutionary Search

Similarly like in WhiBo generic decision tree user interface contains four panels:

Left panel contains an array of buttons. Every button represents a concrete
sub-problem for a decision-tree algorithm design.

Central panel contains:
e Available RCs of selected sub-problem from the left panel.
e Available parameters (if available) for selected RCs.

e Buttons for including or disabling a RC from the current decision tree
structure.

Right panel shows current state of user designed algorithm (saved sub-
problems, RCs and parameters).

Top panel contains options for creating new, saving current or opening existing
generic decision tree algorithm.

-
| £| Evolutionary generic decision M
T

’ Mew Space] [Save Space] [Open Space]

= - _—
- 3/ Generic Decision Tree
Remove insignificant atributes Component Name | Remove insignificant atributes
o | Create split
Component Description | Evaluate split
Select Components | Stop criteria
Create split " Prune tree
Evaluate split
Stop criteria
Parameters
Prune tree

Figure 5 - WhiBo GDT evolutionary search user interface for design of algorithm search
space

General procedure for designing algorithm search space:

e Select sub-problem from left panel. When sub-problem is selected,
possible solutions (RCs) are shown in central panel.

e Select RC (or components if multiple) for sub-problem from central
panel. If parameters for component(s) are available, they will be shown
in bottom part of central panel with lower and upper values selected.
User can modify these values.

e Click on save component button. Components and defined parameters
for selected sub-problem will be shown in the right panel as part of
current GDT algorithm.

e This procedure should be repeated for every sub-problem (Create split
and Evaluate split sub-problem are basic for decision tree growth and
they must be defined. Definition of other sub-problems is optional).
When all sub-problems, components and parameters are defined

algorithm should be saved on file system (click on save button from
upper panel). By default algorithms are saved with .ass (algorithm search
space) extension.

After definition of algorithm search space parameters for genetic algorithm
should be defined.

Parameters:

e MAX_ ALLOWED EVOLUTIONS — maximal numbers of generations of
genetic algorithms (default value - 50).

e POPULATION_SIZE — number of units (decision trees) in one generation
(default value - 30).

e MUTATION_RATE - percentage of genes (components) will be changed
(default value - 6).

e CROSSOVER_RATE - rate of crossover of chromosomes in genetic
algorithm (default value — 0.35)

e SWITCH_FROM_SURROGATE_PERCENTAGE_EVOLUTIONS — defines how
many units should be removed from previous generation (default value —
0.4)

e SURROGATE_PERCENTAGE — defines how many units should be selected
from previous generation (default value — 0.4)

e mutateComponents — boolean value indicating weather reusable
components should be mutated (default value - true).

e mutateParameters — boolean value indicating weather parameters
should be mutated (default value - true).

e componentsMutationRate — mutation rate of components (default value
-1).

e parametersMutationRate — mutation rate of parameters (default value -
1).

& ™
|

Edit Parameter List: parameters
The parameters.

parameter name values
(WAX_ALLOWED_EVOLUTIONS |[s0
\POPULATION_SIZE |[20
[MUTATIDN_FEATE][5
[CRDSSDVER_RATE][0.35

[SWITC H_FROM_SURROGATE_PERCENTAGE_EVOLUTION !l [U 4

| SURROGATE_PERCENTAGE J[o:3
[mutateComponents ”true
|mutateParameters ||ratse
|componenthutationRate |[
[parametersh‘lutationRate ”‘1

l Q&dd Entry l [Qgemoue Entry l [Apply l [x Cancel

Figure 6 - Parameters of genetic algorithm

WHIBO testing environment manual
WhiBo provides operators for testing performance and significance of
differences in algorithm performance.

Custom cross validation with log - implements cross validation with custom
defined number of folds and number of iterations and also enables writing
results in log in CSV format. The results are written in average, but also for
every fold and iteration. This operator writes accuracy of classifier, but also:
Maximum tree depth, weighted average tree depth, Total nodes, Total leaves,
and Execution time.

Parameters:

e Average performances_only — check if there is no need for logging the
results for every fold and iteration.

e Algorithm _name — name of the algorithm.

e Dataset name — name of the dataset.

e Number_of folds —number of folds for cross-validation.

e Number_of repetitions — number of repetitions for cross-validation.

e Sampling _type — stratified sampling, linear sampling or shuffled
sampling.

e Log file_details —file path for logging detailed results.

e log file _averages - file path for logging average results.

@Parameters
Sy B~
X-Validation with log

[] keep example set

average performances only

algorithm name [GDT l
dataset name [Iris l
number of folds [2 l
number of repetitions [5 l
sampling type [stratiﬂed sampling vl
local random seed [1 l
log file details

log file averages

[kmplLogAverages.csu" @ I

Figure 7 - Custom cross validation with log operator with parameters

Significance 5X2 cross validation F-test — This is the best significance tester for
classifiers according to (Salzberg, 1999). The 5x2 cross validation F-test
(Alpaydin E. (1999)) is testing significance of differences in algorithm

performance.

Parameters:

e Alpha —significance parameter (Default value — 0.05).

e Local random seed — number used for initialization of pseudorandom

number generator.

e Sampling type — stratified sampling, linear sampling or shuffled

sampling.

E‘g FParameters

alpha
local random seed

sampling type

L 3 eyx B~
Hx2 X-Validation F-test

[EI.EIE l

g |

[stratiﬂed sampling *]

Figure 8 - Significance 5X2cv F-test operator with parameters

Application examples

WhiBo GDT is implemented as RapidMiner operator. WhiBo decision tree
operators require ExampleSet as input and produce TreeModel and ExampleSet
on output, so they are compatible with all Rapid miner’s evaluation and
visualization operators.

For these examples we use “Iris” dataset from UCI repository as a data source
(definition of data source can be done through RapidMiner’s sample data
repository).

£ overview « Process = L
@~ -~ G rrocess » F-E P ESS
=7 [}
Retrieve Iris
P w out e
)
7r_. Operators
| &l Repositories
Bd-aawe
=) @ Samples (non=
B g data (non=
(8 Golf rone - 1
| Golf-Testset (none - v1
_g (none - w1}
\3 Labor-Megotiations iners - vi
|8 Market-Data (none - v1
[& Polynomial (nene - w1
|8 Ripley-Set nens - w1

|8 Sonar (none - v1

[8 Transactions none - vt

__g‘.'\.'elgmmg nene - vl
‘E‘Eprucesses none E@ No problems found

/1 Problems & Log

5 o8 Message Fixes Location
&F MewlLocalRepository (vics

Figure 9 - Basic definition of RapidMiner process

On the lower left side of the screen local repository can be seen. From there,
"Iris” dataset was dragged to Main Process panel. With that step input
ExampleSet is defined.

White-box component based design and application

Using WhiBo GDT with RapidMiner will be explained on examples of creating
well-known algorithms, modifying these algorithms and designing new
algorithms.

When ExampleSet is defined, add GDT operator to root process. GDT can be
found in WhiBo/GDT Operators operator group.

o Process =R
@~ ~ I BiProcess » -0 EHH S~
Retrieve Iris Generic decis...
inp [= out [} gt mad [{ res
o w Q exa) (] res
a8

Figure 10 - Adding GDT operator into stream

When the example source is defined and Generic Tree operator is added in
process, new generic decision tree can be designed, by clicking on Design new
algorithm button.

E@Parameters
SRR B~

Generic decision tree

| || Y, || Design algorithm |

Figure 11 - Parameters panel for GDT operator

Recreation of well-known algorithms with component based
approach

Application of white-box approach will be first explained on recreation of well-
known algorithms.

CART algorithm

First, define Create split sub-problem:
e C(lick on Create split sub-problem on the left panel.
e Select BinaryNumerical and BinaryCategorical components from central
panel (multiple components for one sub-problem are selected by holding
CTRL key and clicking on components).
e Click on save component button from central panel.

[Mew Algorithm] [Save Algorithm] [Open Algorithm

Remaove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Generic Decision Tree

Companent Name Create split ¥ || Remove insignificant atributes
B & Create split

[-] BinaryCategorical
rSelect Components - || BinaryNumerical
BinaryCategorical |- Evaluate split
BinanyNumerical | Stop criteria
MultiwayCategorical =] Prune tree
SignificantCategorical

Component Description Create split

rParameters
BinaryCategorical

BinaryNumerical

Figure 12 - Definition of Create split sub-problem for CART algorithm

On the right panel defined components for a sub-problem is visualized through
a Tree view (Figure above).

Next step is definition of evaluate split sub-problem.
e Click on Evaluate split sub-problem.
e Select Gini index component.
e C(lick on save component button.

[Mew Algorithm] [Save Algorithm] [Qpen Algorithm]

] Generic Decision Tree

Remove insignificant atributes Component Name Evaluate split | Remove insignificant atributes

B T Create split

Component Description Evaluate split _—. BinaryCategorical

~Select Components | BinaryNumerical
Create split ChiSquare - 5 Evaluate split
| Ginilndex

DistanceMeasure - iind
GainRatio | Stop criteria

- | Prune tree
Evaluate spi 8

InformationGain

RandomEval
Stop criteria

~Parameters
Prune tree Ginilndex

Figure 13 - Definition of Evaluate split sub-problem for CART algorithm

Now, the basic components for CART algorithm are defined. Before saving the
algorithm we will define Stop criteria sub-problem:

e Click on Stop criteria sub-problem.

e Select Tree depth component

e Set Tree_Depth parameter on 5 (default value is 10).

e Click on save component button.

[Mew Algaorithm] [Save Algorithm] [Open Algorithm l

RES‘ Generic Decision Tree
Remove insignificant atributes | COmponent Name TYEEE [] Remove insignificant atributes
- L B) Create split
Component Description Stop criteria _F BinaryCategorical
) - Select Components || BinaryNumerical
Create split LeafLabelConfidence =R Evaluate split
MinNodeSize -] Ginilndex
Time B & Stop criteria
B 5 TreeDepth
Evaluate split TreeDepth =} :E‘j,‘ ‘[(ee_Depth
. 15
|| Prune tree
Stop criteria
~ Parameters
Prune tree TreeDepth
Tree_Depth 5

(Type: Integes, Min:1, Max:100, Defauh:10)

Figure 14 - Definition of Stop criteria sub-problem for CART algorithm

Finally Cart algorithm with tree depth stopping criteria is defined and can be
saved on file system.

Click on Save algorithm button from upper panel.

"

B Deskiop v| @ @ %k 9 -~

Bookmarks : File Mame Size Type Last Modified
,:-r — Last Directory . Big Data in Education File Folder Qct26, 2013
.. ClBCB File Folder Apr19, 2013
| Data Mining with Weka File Folder Oct23, 2013
| Hortonwaorks Sandbox File Folder Feb 13,2013
| Ivica Svasta File Folder Aug 28, 2012
|, OSDEA File Folder Aug 29, 2012
| Projects File Folder Oct22 2013
.. Red Hat Enterprice File Folder Oct 3, 2012
| Rezultati File Folder Sep 28, 2013
L. SIAM File Folder Oct7, 2013
o)
[woa file v]

l E Save x Cancel

Figure 15 - Saving CART algorithm on file system

After saving algorithm it must be loaded in GDT GUI clicking on folder button in
parameters panel.

@ FParameters]

b S v W B~ - R

Generic decision tree

|Jsersuwcamesktnp1.CART.wha”) “ Design algorithm l

Choose afile.

Figure 16 - Loading CART algorithm in GDT operator

When stream is executed, graphic a text tree model will be shown.

== Result Ovenview

) Tree (Generic decision tree)

@ Graph View O Text View O Annotations

- Zoom

£ p
~Mode

B &

I

Tree
Node Labels
Edge Labels

Save Image

Help

[a¢)
=>0.800 = 0.800
cil
ey | |
> 1.750 =1.750
[Ha)
///)_ \\
>/4.BOO = 4800 =5.050 = 5.D§0
i) N
P — p —i L -
2] \at) pa
»3100 <3100 >G_050 < 6.050 >4_Br50 = 4350

b 4 ¥ 4 ¥ 4
Iris-versicolor | | Iris-virginica | | Iris-virginica | | Iris-versicolor | Iris-versicolor | | Iris-versicolor
| ——| | — | | | | |

Figure 17 - Result of executed CART algorithm on Iris dataset

C4.5 algorithm
First, define Create split sub-problem:

e Click on Create split sub-problem on the left panel.
e Select BinaryNumerical and MultiwayCategorical components from

central panel (multiple components for one sub-problem are selected by
holding CTRL key and clicking on components)

e Click on save component button from central panel

"

[Mew Algorithm l [Save Algorithm l [Open Algorithm l

75,]‘ Generic Decision Tree
Remove insignificant atributes Compenent Name reat=bpit || Remove insignificant atributes

L) B) Create split
Component Description Create split _v BinaryNumerical
|| MultiwayCategorical

~Select Components

Create split BinaryCategorical [-] Evaluate split
BinaryNumerical _F Stop criteria
Evaluate split SignificantCategorical

Stop criteria

~Parameters
BinaryMumerical

Prune tree

MultiwayCategorical

Figure 18 - Definition of Create split sub-problem for C4.5 algorithm

Second, define Create split sub-problem:
e Click on Evaluate split sub-problem on the left panel.

e Select GainRatio component from central panel.
e Click on save component button from central panel.

s

[Mew Algorithm] [Save Algorithm] [Open Algorithm]

TEE‘ Generic Decision Tree

Component Name Evaluate split |1 Remove insignificant atributes

L) B & Create split
Component Description Evaluate split _F BinaryNumerical
|| MultiwayCategorical

Remaove insignificant atributes

_ r Select Components
Create split ChiSquare SRk Evaluate split
DistanceMeasure -] GainRatio

GainRatio El gtop crtiteria
- rune tree

Evaluate split Ginilndex —

InformationGain

RandomEval

Stop criteria

- Parameters
Prune tree GainRatio

Figure 19 - Definition of Evaluate split sub-problem for C4.5 algorithm

Third, define Stop criteria sub-problem:

e Click on Stop criteria sub-problem on the left panel.
e Select TreeDepth component from central panel.

e Set Tree _Depth parameter for example on 10.

e Click on save component button from central panel.

L&) Generic decision tree

[Mew Algorithm l [Save Algorithm l [Open Algorithm l

Remove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Component Mame

Component Description

Stop criteria

Stop criteria

rSelect Components
LeafLabelConfidence
MinNodeSize

Time

TreeDepth

~ Parameters
TreeDepth

Tree_Depth

10

(Type: Integer, Min:1, Max:100, Default:10)

ﬁ]‘ @pneric Decision Tree
| Remove insignificant atributes
B 4 Create split
| BinaryNumerical
| MultiwayCategorical
= Evaluate split
| GainRatio
B &) Stop criteria
B 5 TreeDepth
B &) Tree_Depth
LD
| Prune tree

Figure 20 - Definition of Stop criteria sub-problem for C4.5 algorithm

Fourth, define Prune tree sub-problem:

e Click on Prune tree sub-problem on the left panel.

e Select PessimisticError component from central panel.
e Set Confidence Level parameter on 0.2.

e Click on save component button from central panel.

—— — Bl

[Mew Algorithm l [Save Algarithm l [Open Algorithm l

- T/ Generic Decision Tree
Remave insignificant atributes Component Name SAITAGES - Remove insignificant atributes
= -
Component Description Prune tree =y C_r.eat.e split .
~| BinaryMumerical
Select Components ~| MultiwayCategorical
eseaels pli CostComplexi B & Evaluate split
plexity k
MinimalErrar ~| GainRatio
MinLeafSize B9 Stop criteria
. —— = 2 TreeDepth
Evaluate split PessimisticErrar 5 & Tree_Depth
ReducedError 10
B & Prune tree
Stop criteria = G PessimisticError
-) Confidence_Level
02
Parameters
Prune tree PessimisticError
Confidence_Level 0z

(Type: Double, Min:0.0, M=:0.5, Default.25)

Figure 21 - Definition of Prune tree sub-problem for C4.5 algorithm

Finally, C4.5 algorithm is defined and can be saved on file system. Click on Save
algorithm button from upper panel. When algorithm is defined, load it from file
system and execute stream.

FﬁgParameters
SRy B~

Generic decision tree

|.LIsersllvicaﬁ.DesktnmCrl.E.wba” =) “ Design algorithm

Figure 22 - Loading C4.5 algorithm in GDT operator

When stream is executed, graphic a text tree model will be shown.

Q Tree (Generic decision treg)

@ Graph View O Text View O Annotations

=
= Result Overview

rZoom

p P

Mode

B 4

I

Tree
Node Labels

)

Edge Labels

Save Image..

Help

+3400 23400

I

 —
—

od e
- S
- e
s
.8
a3
e Seas
‘
A rd
i e o, s

=

2150 1350 =135

>4780 maTED

]

EES

Figure 23 - Result of executed C4.5 algorithm on Iris dataset

CHAID algorithm
First, define Create split sub-problem:

e Click on Create split sub-problem on the left panel.

e Select BinaryNumerical and SignificantCategorical components from
central panel (multiple components for one sub-problem are selected by
holding CTRL key and clicking on components)

e Set default parameters Merge Alpha_Value and Split_Alpha_Value for
SignificantCategoricalComponent.

e Click on Save component button from central panel.

= Genere decsion e

[Mew Algorithm] [Save Algorithm] [Open Algorithm

”\5.7 Generic Decision Tree
Remove insignificant atributes | Component Name CreateSpliE 1 Remove insignificant atributes
B 4 Create split
| BinaryMumerical

[Select Components Bl &) SignificantCategorical
Create split BinaryCategorical =) Merge_Alpha_Value
_ og0

= G Split_Alpha_Value

MultiwayCategorical | 0.049
Evaluate split [SignificantCategorical :_ Evaluate_split
| Stop criteria

| Prune tree

Component Description Create split

Stop criteria

~Parameters
Prune tree BinaryNumerical

SignificantCategorical

Merge_Alpha_Value [0.050

(Type: Double, Min:0, Max:1, Default:0.050)
Split_Alpha_Value [0.049

(Type: Double, Min:0, Max:1, Default:0.045)

Figure 24 - Definition of Create split sub-problem for CHAID algorithm

Second, define Evaluate split sub-problem:

"

Click on Evaluate split sub-problem on the left panel.
Select ChiSquare component from central panel.

Click on save component button from central panel.

[Mew Algorithm l [Save Algorithm l [Open Algorithm]

Remove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Component Name

Component Description Evaluate split
rSelect Components
DistanceMeasure

GainRatio

Ginilndex

InformationGain

RandomEval

~Parameters
ChiSgquare

i‘:j‘ Generic Decision Tree
; Remaove insignificant atributes
& & Create split
|| BinaryMumerical
=) SignificantCategorical
= 5 Merge_Alpha_Value
[0.050
= <) Split_Alpha_Value
-] 0.049
& &) Evaluate split
|| ChiSquare
_: Stop criteria
|| Prune tree

Figure 25 - Definition of Evaluate split sub-problem for CHAID algorithm

Third, define Stop criteria sub-problem:

e Click on Stop criteria sub-problem on the left panel.
e Select TreeDepth component from central panel.

e Set Tree_Depth parameter for example on 5.

e Click on save component button from central panel.

2 Genene s s

[Mew Algorithm] [Save Algorithm] [Open Algorithm]

Remove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Component Mame

Component Description

Stop criteria

Stop criteria

~Select Components
LeafLabelConfidence
MinNodeSize

Time

TreeDepth

~ Parameters
TreeDepth

Tree_Depth

5

(Type: Integer, Min:1, Max:100, Defaul:10)

t‘:j ggneric Decision Tree
_' Remaove insignificant atributes
=) Create split
|| BinaryNumerical
B 5 SignificantCategorical
B) Merge_Alpha_Value
-] 0.050
B 5 Split_Alpha_Value
[] 0.049
=) Evaluate split
|~| ChiSquare
B 5 Stop criteria
B) TreeDepth
B 5 Tree_Depth
T Tgs
| Prune tree

Figure 26 - Definition of Stop criteria sub-problem for CHAID algorithm

Fourth, define Prune tree sub-problem:

e Click on Prune tree sub-problem on the left panel.

e Select PessimisticError component from central panel.
e Set Confidence Level parameter for example on 0.2.

e Click on save component button from central panel.

— il

[Mew Algorithm l [Save Algorithm l [Open Algorithm l

-)/ Generic Decision Tree
Remave insignificant atributes Component Name e | Remove insignificant atributes
= -
Component Description Prune tree S C_r.eat.e split X
-| BinaryMumerical
_ Select Components = ’\":ﬁ SignificantCategorical
Create split CostComplexity = '{_,\“‘ Merge_Alpha_Value
MinimalError | 0.050
MinLeafSize B) Split_Alpha_Value
; —— | 0.049
Evaluate st b @ vt o
educedError) Chisquare
B) Stop criteria
Stop criteria B &) TreeDepth
= G Tree_Depth
| 5
Parameters B) Prune tree
Prune tree PessimisticError & &) PessimisticError
=) Confidence_Level
Confidence_Level 0.z 02

(Type: Double, Min:0.0, M=:0.5, DefaultD.25)

Figure 27 - Definition of Prune tree sub-problem for CHAID algorithm

Finally, CHAID algorithm is defined and can be saved on file system. Click on
Save algorithm button from upper panel. When algorithm is defined, load it
from file system and execute stream.

%Parameters
S PmB-~

Generic decision tree

|sera‘.l'u'ic:a*.Deaktnp*.CHﬂlD.wha|| @ H Design algarithm

Figure 28 - Loading CHAID algorithm in GDT operator

When stream is executed, graphic a text tree model will be shown.

; Result Overview Q Tree (Generic decision tree)

(#) Graph view () TextView () Annotations

rZoom
o o c)

+0.800 =0.800

*>1.750 = 1.750

Tree
o s
Mode Labels Ve

=2800 54800 =5080 55080

Edge Labels b
"“““’i“ : @ h
al
=T (=) e

=32.100 = 2100 >B_.D.50 = 8050

s h | ¥ |
Iris-versicolor | | Iris-virginica | | Iris-virginica | | Iris-versicolor

I

Help

Figure 29 - Result of executed CHAID algorithm on Iris dataset

Modifying generic decision tree algorithms

Algorithms created through WhiBo interface could be easily modified by
parameters, sub-problems or components. WhiBo algorithms are saved on a
file system by .wba (WhiBo algorithm) extension. Existing algorithms can be
loaded for editing by clicking on Open algorithm button from the top panel of
WhiBo interface.

[Mew Algorithm] [Save Algarithm]l[Cpen Algorithm]

Figure 30 - Opening existing algorithm for modification

In this section it will be explained modifying of CHAID algorithm that was
created and saved in previous example.

I.- — H-.
ié_oiOpen File I. 2% I

B Desktop v & @ k@ 9 -~

| Bookmarks 4 File Mame Size Type Last Modified
'*_.',':r—LastDiredory i . S0L Developer File Folder Feb 10, 2013 =
 Umlet File Folder Aug 28, 2012
.. WhiBoStari File Folder Oct 30,2013
'@ 99733.pdf 1MB Adobe Acrobat Doc... Oct12, 2013
[Al Adobe Dreamweaver CS6.Ink 1KB Predica Oct4, 2013
'@ Balcor 2013 Proceedings. pdf 21MB Adobe Acrobat Doc.. Oct9 2013
| | C45wba 5KB WBA Datoteka MNov 2, 2013
|| CART.wba 4KB WBA Datoteka MNov 2, 2013
@ CCleaner.Ink 1KB Predica Aug 28, 2012
EKE WBADatoteka Nov2, 2013
@ Customize Fences.Ink 1KB Predica Aug 28, 2012
@ DAEMON Tools Lite.lnk 1KB Predica Jun 7, 2013
@ Eclipse.Ink 1KB Predica Sep 28, 2013
@ Get Started With Oracle Database 11g Express... 2KB Predica Feb 9 2013
[l Git Shell.Ink 2KB Predica Dct 25,2013
@ GitHub.appref-ms 1KB ClickOnce Applicati.. Oct25, 2013
@ Google Web Designer.Ink 2KB Preéica Oct1,2013 =
|CHAID.wba]
| Al Files v

[L:SJ' Dpen H x Cancel l |

Figure 31 - Selecting existing algorithm from file system

When existing algorithm is opened, its sub-problems and RCs are shown in a
tree view on the right panel of WhiBo interface.

[Mew Algorithm l [Save Algorithm l [Open Algorithm l I

Remaove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Component Mame

Component Description

Select Components

Parameters

Figure 32 - Loaded algorithm in GDT GUI

’Ej‘ Generic Decision Tree
| Remove insignificant atributes
B 4 Create split
| BinaryMumerical
B 5] SignificantCategorical
B) Merge_Alpha_Value
| 0.050
=) Split_Alpha_Value
| 0,049
=] Evaluate split
| ChiSguare
B & Stop criteria
= w2 TreeDepth
=) Tree_Depth
15
Prune tree
i) PessimisticError
= 4 Confidence_Level
| 0.2

DO’J

El

o

Modifying of existing algorithms is done the same way as creating of new

algorithms. In this example we will show how to

e modify parameter of already defined component,

e change component of defined sub-problem,

e adding new sub-problem and component for its solution.

Modifying parameters

In this example we will modify Merge_Alpha_Value and Split_Alpha_Value
parameters of Create split — SignificantCategorical component and Tree_Depth
parameter of Stop criteria - TreeDepth:

e Click on Create split sub-problem on the left panel.

e Set Merge Alpha_Value on 0.03.

e Set Split Alpha_Value on 0.02.

e Click on save component button from central panel.

e Click on StopCriteria sub-problem on the left panel.

e Set Tree_Depth parameter on 4.

e Save algorithm as CHAIDModifiedParameters by clicking on Save
algorithm button from top panel.

Result from executed algorithm is shown on figure below.

=7 Result Overview () Tree (Generic decision tres)

&) Graph View Text View Annotations

Zoom o
ﬁ ﬁ | ad |
=0.200 = 0.800
Maode ¥ -
|’ ad | Iris-zetosa
= [
&
= 1.780 = 1.780
a"-{"' 1\-'|
Iris-virginica |E|
I S
Mode Labels
> 5050 = 5050
Edge Labels |
Iris-virginica | | Iris-versicolor
Save Image... 1

Help

Figure 33 - Loaded algorithm in GDT GUI

Replacing components for sub-problem

In this example we will replace Evaluation measure component in
CHAIDModifiedParameters algorithm that is created in previous subsection.

e Click on Evaluate split sub-problem on the left panel.

e Select DistanceMeasure component from central panel.

e Click on save component button from central panel.

e Save algorithm as CHAIDModifiedParametersDistance by clicking on Save
algorithm button from top panel.

L Generi decision ree)

[Mew Algarithm] [Save Algorithm] [Open Algorithm]

-) Generic Decision Tree
Remove insignificant atributes Component Name EyaliatElsplE | Remove insignificant atributes

& 2 Create split

Component Description Evaluate split 5 BinayNumerical
) - Select Components = ”\5,7 SignificantCategorical
Create split ChiSquare =) Merge_Alpha_Value

] 003

- S Split_Alpha_Value

GainRatio 1 0.02

Evaluate split Ginilndex B9 Evaluate_split
InformationGain -1 DistanceMeasure
RandomEval =} '\5,7 S_top criteria

Stop criteria = @TreeDepth

=) Tree_Depth
~ =] 4

~Parameters £ Prune tree

Prune tree DistanceMeasure

Figure 34 - Replacing components in CHAID algorithm in GDT GUI

Result from executed algorithm is shown on figure below.

27 Result Overview () Tree (Generic decision tree)

(@) Graph View () TextView () Annotations

Zoom

2 p
Maode

&

=>1.750
(wal

*4.800 = 4300

Tree

I

Mode Labels

= 2.450

> 5050 = 5.050

- |

Iriz-setosa

Edge Labels ¥
Iris-virginica | | Iris-virginica
Save Image... [

Iris-wirginica | | Iris-versicolor

Help

Figure 35 - Result of modified CHAID algorithm

Adding new sub-problem and component to an existing algorithm

Besides changing of parameters and components existing algorithms could be
extended with new sub-problems and components. We will explain this
extension by adding Prune tree sub-problem to CHAID algorithm that is defined

in previous subsection.

e Load CHAID algorithm from file system by clicking on Open algorithm

button from top panel.
e Select Prune tree sub-problem from left
e C(lick disable.

panel.

e Select MinLeafSize component from central panel.

o Set Size Of Leaf parameter to 15.

e C(lick on save component button from central panel.

e Save algorithm as CHAIDPrune by clicking on Save algorithm button from

top panel.

||) Generic decision tree

[Mew Algaorithm][Save Algorithm][Open Algorithm

Remaove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Component Mame Prune tree

Component Description Prune tree

fi,‘ Generic Decision Tree
|| Remave insignificant atributes
B) Create split
|1 BinayNumerical

rSelect Components

B) SignificantCategorical
= i Merge_Alpha_value

(Type: Double, Min:1, Ma:1000, Defauh:30)

CostComplexity
MinimalError £l .0.050
& < Split Alpha_value
PessimisticError -] D.049
= 5 Evaluate split
ReducedError =y ChiSquare
= <5 Stop criteria
B 5 TreeDepth
E}) Tree_Depth
15
- Parameters B 5] Prune tree)
MinLeafSize B) MinLeafSize
) Size_Of_Leaf
Size_Of Leaf [15 =15

Figure 36 - Adding new sub-problem in existing algorithm

Result from executed algorithm is shown on figure below.

Result Overview Q Tree (Generic decision tree)

@ Graph View O Text View O Annotations

Mode Labels
Edge Labels

Save Image...

rZoom —
- a4
=0.800 = 0.800
~Mode) Iﬂé} -
. § | 24 ris-setosa
=1.750 =1.750
- ~
Iris-virginica | | Iris-versicolor
|

Help

Figure 37 - Result of executed CHAID with prune algorithm on Iris dataset

Besides recreation and modification of existing algorithms WhiBo also enables:

Design of new algorithms, by combination of components that are
derived from well-known algorithms (C4.5, CART, CHAID) or partial
algorithm improvements (e.g. distance measure).

Incorporating partial improvements of algorithms that can be found in
literature, but are not incorporated in any specific algorithm (e.g.
Distance evaluation measure).

Incorporating a new sub-problem in an algorithm (e.g. Remove
insignificant attributes)

Multiple component selection for sub-problem - it is possible to define
more Splitting components stopping criteria.

Generic decision tree evolutionary search design and
application

WhiBo evolutionary search GDT is implemented as RapidMiner operator chain.
WhiBo evolutionary search decision tree operators require ExampleSet as input
and produce TreeModel, ExampleSet and Performance on output.

For these examples we use “Weighting” dataset from RapidMiner’s sample
data repository.

~ Process =] KL
@~ - & Process » @ ~ [E ¥ d &~
Retrieve Iris Set Macro WhiBo GDT Fwv...
inp :) out :1 (thr Thl') (tra miod) (: res
. @ (: thr -:‘_V thr (_\l exa [: res
() @ per (] res
0 =)

Figure 38 - Main process for WhiBo evolutionary search decision tree

Main process should contain at least three operators. Those are dataset (in this
case Weighting dataset), Set Macro and WhiBo GDT Evolutionary Search. Since
WhiBo GDT Evolutionary Search is operator chain it contains subprocess. Inside
of this subprocess Generic decision tree should be placed.

After loading dataset Macro must be provided. Macro points to WhiBo
algorithm file which is needed to GDT Evolutionary Search operator.

E_'g Parameters

b e N = = - R

-.fy" Set Macro

Macro [wbaFiIe l

value [icaﬁ.Desktnp*.‘.“.fhiElnGDT.whal

Figure 39 - Parameters panel of Set Macro operator

GDT Evolutionary Search operator is set after this. Previously defined Macro is
set in wba file path macro name parameter text box. Also, log file path is
defined. In that file results will be stored. Setup for algorithm search space and
parameters of genetic algorithms are below.

F’arameters
S DBy R B~
Q VWhiBo GDT Evolutionary Search

|'utnrija|‘.ass ﬁIe\SearchSpace.ass“) " Design Space

l
l

wha file path macro name |%{whaFiIe} |

evolutionary parameters [[2' Edit List (10])...

log file path |D:1.IugEPc..csv H '\5:' l

Figure 40 - Parameters panel of GDT Evolutionary Search operator

Algorithm search space must be specified.

First, define Create split sub-problem space:

e Click on Create split sub-problem on the left panel.

e Select all components from central panel (multiple components for one
sub-problem are selected by holding CTRL key and clicking on
components)

e Set default lower and upper values for Merge_Alpha_Value and
Split_Alpha_Value for SignificantCategoricalComponent.

e Click on Save component button from central panel.

~ —— Bl
| £:| Evolutionary generic decision u

[MNew Space l [Save Space l [Open Space l

- T/ Generic Decision Tree
Remove insignificant atributes Component Name EuakiateSnNE | Remove insignificant atributes

& 2 Create split

| BinaryCategorical
Select Components -| BinaryNumerical
Create split | MultiwayCategorical
= 3 SignificantCategorical

-) Merge_Alpha_Value

) | 0-1
SEUEDEEN B 5 Split_Alpha_value
) | 0-1
| Evaluate split
| Stop criteria
| Prune tree

Component Description Evaluate split

Stop criteria

Parameters
Prune tree

Figure 41 - Definition of Create split components for algorithm search space

Second, define Evaluate split sub-problem:

e Click on Evaluate split sub-problem on the left panel.

e Select ChiSquare, DistanceMeasure and GainRatio component from
central panel.

e Click on save component button from central panel.

[MNew Space] [Save Space] [Open Space]

'Ef,' Generic Decision Tree
Remove insignificant atributes Companent Name Evaluate split |1 Remove insignificant atributes
-) B & Create split
Component Description Evaluate split _ Binan/Categorical
) rSelect Components _ BinaryMumerical
Create split (ChiSquare || MultiwayCategorical
DistanceMeasure B) SignificantCategorical
GainRatio =& hi?rgeqﬁlpha_\u’alue
Evaluate split G|n|lnde.x . o fi‘ S_plit_AIpha_\falue
InformationGain 1 0-1
RandomEval = ';5;‘! @'aluate_split
Stop criteria |-/ ChiSquare
|| DistanceMeasure
-] GainRatio
- Parameters || Stop criteria
Prune tree ChiSquare || Prune tree

DistanceMeasure

GainRatio

Figure 42 - Definition of Evaluate split components for algorithm search space

Third, define Stop criteria sub-problem:

e Click on Stop criteria sub-problem on the left panel.
e Select TreeDepth component from central panel.

o Set Tree_Depth parameter from 1 to 10.
e Click on save component button from central panel.

[Mew Space l [Save Space] [Open Space l

Remove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Component Mame

Component Description

Stop criteria

Stop criteria

rSelect Components
LeafLabelConfidence
MinNodeSize

Time

HEERE

- Parameters
TreeDepth

Tree_Depth

1 H

(Type: Integer, Mini1, Max:100, Defauit:10)

10

ﬁ]‘ @pneric Decision Tree
| Remove insignificant atributes
B 4 Create split
| BinaryCategorical

| BinaryNumerical
| MultiwayCategorical
B 5 SignificantCategorical
B) Merge_Alpha_Value
| 0-1
B 5 Split_Alpha_Value
0-1
= Evaluate split
| ChiSquare
| DistanceMeasure
| GainRatio
B) Stop criteria
B) TreeDepth
B G Tree_Depth
N 11-10
| Prune tree

Figure 43 - Definition of Stop criteria components for algorithm search space

Fourth, define Prune tree sub-problem:

e Click on Prune tree sub-problem on the left panel.

e Select PessimisticError component from central panel.
e Set Confidence Level parameter from 0 to 0.5.

e Click on save component button from central panel.

I 4| Evolutionary generic decision tres

[Mew Space l [Save Space l [Open Space l

Remave insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Component Mame Prune tree

Component Description Prune tree

rSelect Components
CostComplexity
MinLeafSize
MinimalError

PessimisticError

ReducedError

r Parameters
PessimisticError

Confidence_Level 0 [} [I 05
(Type: Double, Min:0.0, M=:0.5, Defauind.25)

i‘:j‘ Generic Decision Tree
| Remove insignificant atributes
- i Create split
| BinaryCategorical
| Binaryhumerical
| MultiwayCategorical
B) SignificantCategorical
= 5 Merge_Alpha_Value
| 0-1
=) Split_Alpha_Value
10-1
=) Evaluate split
| ChiSquare
| DistancelMeasure
| GainRatio
B & Stop criteria
B) TreeDepth
=) Tree_Depth
11-10
= S Prune tree
B) PessimisticError
=) Confidence_Level
1 0-05

Figure 44 - Definition of Prune tree components for algorithm search space

Next step in configuring GDT Evolutionary Search operator is parameter
settings of genetic algorithm by clicking Edit List button next to parameters in
Parameters panel:

e Set MAX_ALLOWED_POPULATION to 10.

e Set POPULATION_SIZE to 5

e Set mutateParameters to true.

e Click on Apply button.

Edit Parameter List: parameters
The parameters.

parameter name
lMA)(_ALLDWED_EVDLUTIDNS

lF’DF‘ULATIDN_SIZE

lMUTAﬂDN_RATE

lCRDSSDVER_RME

lSWITCH_FRDM_SU RROGATE_PERCENTAG E_E‘u’DI_UTIDN:] [0_4

[su RROGATE_PERCENTAGE “0_3

lmutate Components Htrue

lmutate Parameters Htrue

lcnmpnnemMutatinnRate “1

lparametersMutatinnRate “1

[E_],gdd Entry l [E;Bemnve Entry l | @F\pply I [I cancel] |

Figure 45 - Definition of parameters for genetic algorithm

Inside GDT Evolutionary Search operator is cross validation operator, and inside
cross validation there is GDT operator in Training section, while Apply Model
and Performance operators are in Testing section. GDT should have valid .wba
file, with defined Create split and Evaluate split components.

Validation
tra [} gta mad [(] per
i tra) C maod
% ave :)
e D
0 i
1
Decision Tree Apply Model Performance
tra) C tra rmiod :) c rmiod miod) rmiod l,._.\l labs :) C laks q per :) C ave
Q exa) thr tes [} unl g’ mod [} € per % exa) (] ave
a® thr a® ®
Figure 46 - GDT Evolutionary Search subprocess
Result from executed algorithm is shown on figures below.
57 Result Overvisw P, Performancevector (Perfarmance) | & ExampleSet (Retrisve Waighting)) Tree (Generic decision trag)
(@) Graph view () Text View () Annotations F=T

Zoom

£ p

Mode

]
-

Node Labels

Edge Labels
=

g nay
egay
a
e
oz |
o -
e re——
a ¥ A r -
e—— —— =l [e—— i
o v ~ T4

Figure 47 - Result of executed GDT Evolutionary Search example

(®) Table / Plot View () Textview () Annotations
Criterion Selector

o~

(@) Table View () PlotView

pred. negative
pred. positive
class recall

E Result Overview % PerformanceYector (Performance)

(@) Multiclass Classification Performance () Annotations

accuracy: 89.80% +/- 4.85% (mikro: 89.80%)

true negative
212

26

89.08%

@ ExampleSet (Retrieve Weighting)

true positive
25

237

90.46%

Q Tree (Generic decision treg)

class precision
80.45%
90.11%

Figure 48 - Performance of executed GDT Evolutionary Search example

21 Number of values returned from cache: 6
22 Number of evaluations of fitness function: 16
23 Execution time: 00:07

24 Cache cleared-------—-------

25 null

26 null

27 null

28 null

29 null

30 null

31 null

32 null

33 null

34 null

35 The best solution fitness value:

36 Best Solution:

37 null

38 Mumber of values returned from cache: 25

w

39 Number of evaluations of fitness function: 10

BinaryCategorical
BinaryCategorical
BinaryCategorical
BinaryCategorical
BinaryCategorical
BinaryCategorical
BinaryCategorical
BinaryCategorical
BinaryCategorical
BinaryCategorical
0.52

BinaryCategorical

ChiSguare
ChiSguare
DistanceMeasure
GainRatio
ChiSquare
ChiSquare
ChiSquare
ChiSguare
ChiSguare
ChiSguare

ChiSquare

TreeDepth(46)
TreeDepth(77)
TreeDepth(77)
TreeDepth(77)
TreeDepth(77)
TreeDepth(15)
TreeDepth(78)
TreeDepth(78)
TreeDepth(17)
null

TreeDepth(17)

PessimisticError(0.08941713426889725)
PessimisticError(0.08941713426889725)
PessimisticError(0.08941713426889725)
PessimisticError(0.08341713426889725)
PessimisticError(0.3948348474061291)
PessimisticError(0.3948348474061291)
PessimisticError(0.3948348474061291)
null
PessimisticError(0.3943348474061291)
PessimisticError(0.3943348474061251)

PessimisticError(0.3948348474061291)

0.92

0.91
0.892
0.898
0.912
0.854
0.856
0.908
0.902
0.902

Figure 49 - Log file of executed GDT Evolutionary Search example

Modifying algorithm search space
Modifying of existing algorithm search space is done the same way as creating
of new algorithms, by clicking Design algorithm button. In this example we will

show how to

e modify parameter of already defined component,
e change component of defined sub-problem,
e adding new sub-problem and component for its solution.

Modifying parameters

In this example we will modify Merge_Alpha_Value parameters of Create split —
SignificantCategorical component:

e Click on Create split sub-problem on the left panel.
e Set Merge Alpha_Value from 0.1 to 0.4.

e Click on save component button from central panel.
e Save algorithm search space.

[Mew Space l [Save Space l [Open Space l

Remaove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

"ES‘ Generic Decision Tree
Component Name S || Remove insignificant atributes
L) B) Create split
Component Description Create split __ BinaryCategorical
|| BinaryNumerical
BinaryCategorical || MultiwayCategorical

~Select Components

BinaryNumerical = ﬁ,‘ SignificantCategorical
MultiwayCategorical =R M?fgi_ﬁgpza_Value
SignificantCategorical 4 ﬂ S_DIit_AIpha_\u’aIue
E0-1
B 5 Evaluate split
[-] chisquare
.| DistanceMeasure
|| GainRatio
~Parameters B & Stop criteria
BinaryCategorical = G TreeDepth
& & Tree_Depth
11-10
BinaryNumerical B & Prune tree

B) PessimisticError
= &) Confidence_Level

MultiwayCategorical =] 0-05

SignificantCategorical

Merge_Alpha_Value 0.1 — I 04
(Type: Double, Min:0, Max:1, Defauit:0.050)
Split_Alpha_Value 0 | [] 1

(Type: Double, Min:D, Max:1, Defauit:0.045)

Figure 50 - Modifying parameters of Merge_Alpha_Value

Replacing components for sub-problem
Replacing components for sub-problem is done in following way:

e Click on Evaluate split sub-problem on the left panel.
e Add InformationGain component (using CTRL button) from central panel.
e Remove GainRatio component (using CTRL button).
e Click on save component button from central panel.
e Save algorithm search space.

[Mew Space] [Save Space] [Open Space

Remaove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Component Mame Evaluate split

Component Description Evaluate split

r Select Components

DistanceMeasure
GainRatio
Ginilndex

InformationGain

RandomEval

- Parameters
ChiSquare

DistanceMeasure

InformationGain

t‘:j generic Decision Tree
|| Remaove insignificant atributes
B & Create split
:’ BinaryCategorical
|| BinaryNumerical
|| MultiwayCategorical
B) SignificantCategorical
=) Merge_Alpha_Value
[J01-04
B 5 Split_Alpha_Value
10-1
=) Evaluate split
| Chigguare
| DistanceMeasure
|| InformationGain
B 5 Stop criteria
B) TreeDepth
=) Tree_Depth
[11-10
= S Prune tree
B) PessimisticError
B 5 Confidence_Level
1o-08

Figure 51 - Replacing components in GDT Evolutionary Search

Adding new sub-problem and component to an existing algorithm

Besides changing of parameters and components existing algorithm search
space could be extended with new sub-problems and components. We will
explain this extension by adding Remove insignificant attributes sub-problem.

e Select Remove insignificant attributes sub-problem from left panel.

e Select FTestNumerical component from central panel.

e Leave default paramaters setting.
e Click on save component button from central panel.
e Save algorithm search space.

-
@E\«:llutionarj«I generic decision ﬂ

[Mew Space] [Save Space] [Open Space]

Remaove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Component Name

Component Description Remove insignificant atributes

Select Components

ChiSquareTestCategorical
FTestMumerical

Parameters
FTestNumerical

Remove insignificant atributes

Alpha_Walue 0 [}

(Type: Double, Min:0.0, Max:0.5, Defauit:0.05)
Use_Percentage_Instead O [}

[Type: int, Min:0, Masx1, Defauit:0)
Percentage_Remaove 0 [}

(Type: Double, Min:0.0, Max:1.0, Defauin0.4)

05

Generic Decision Tree
= '\E;‘ Remove insignificant atributes
B) FTestNumerical
= i) Alpha_Value
1 0-05
= REJT‘ Use_Percentage_Instead
| 0-1
5] ”E_.C‘ Percentage_Remaove
10-1
B i Create split
| BinaryCategorical
_| BinaryMumerical
| MultiwayCategarical
B) SignificantCategorical
= i5J Merge_Alpha_Value
1 01-04
= 5 Split_Alpha_Value
10-1
=) Evaluate split
| ChiSquare
| DistanceMeasure
| InformationGain
B "5 Stop criteria
B) TreeDepth
=) Tree_Depth
11-10
=) Prune tree
i) PessimisticError
2l Confidence_Level
1 0-05

ojy

Figure 52 - Adding new subproblem in GDT Evolutionary Search

After conducting experiment with this algorithm search space setup results
shown on figures below were gathered.

57 Result Ovarvisw %, PerformanceVector (Performance) |8 ExamplaSet (Retrisve Waighting) () Tree (Genaric decision treg)

(@) Table / Plot View () TextView () Annotations [F=Tr']
Criterion Selector @ Multiclass Classification Performance O Annotations [F=] .§ -
accuracy

(@) Table View () Plot View

accuracy: 91.00% +/- 2.72% (mikro: 91.00%)

true negative true positive class precision
pred. negative 213 20 91.42%
pred. positive 25 242 90.64%
class recall 80.50% 92.37%

Figure 53 - Performance of executed GDT Evolutionary Search example

54 |Cache cleared--------------
55 Number of values returned from cache: 13

56 Number of evaluations of fitness function: 12

57 Execution time; 00:04

58 |Cache cleared---------—----—-

59 |FTestNumerical{0.9729494240097137) MultiwayCategorical DistanceMeasure null PessimisticError(0.43504839077645285) 0.898
60 FTestNumerical({0.5242083226527987) MultiwayCategorical DistanceMeasure null Pessi icError(0.291387730739167) 0.912
61 FTestNumerical{0.27080173073754676) MultiwayCategorical DistanceMeasure null PessimisticError(0.291387730739167) 0.902
62 FTestNumerical{0.9053335432718563) MultiwayCategorical DistanceMeasure null PessimisticError(0.2137296357883106) 0.904
63 FTestNumerical{0.34203456281543106) MultiwayCategorical DistanceMeasure null Pessi icError(0.2137296357883106) 0.912
64 FTestNumerical{0.662099165297556) MultiwayCategorical DistanceMeasure null PessimisticError(0.2137296357883106) 0.898
65 | The best solution fitness value: 0.912

66 |Best Solution:

67 FTestNumerical(0.34203456281548106) MultiwayCategorical DistanceMeasure null PessimisticError(0.2137296357883106)

68 |Number of values returned from cache: 26
69 | Number of evaluations of fitness function: 6

Figure 54 - Log file of executed GDT Evolutionary Search example

