
University of Belgrade
Faculty of Organizational Sciences

Center for Business Decision Making

WHIBO User guide

Belgrade, November 2013

Introduction

WhiBo is a RapidMiner (Mierswa et al. 2006) plug-in for “white-box”
component based design of decision tree algorithms for classification and
evaluation of these algorithms and their parts. It is intended to be used by
typical end users, research scientists and algorithm developers. The main idea
of WhiBo is to offer standardized components for algorithm design which will
enable simple design and performance testing, easy extension of the
component repository and creation of new generic algorithms. Currently,
WhiBo provides one generic algorithm, a graphical interface and a component
repository for design of decision trees for classification. A framework for
performance testing is implemented in WhiBo as well. WhBo plug-in and
source code, is available from www.whibo.fon.rs. Source code is documented
thoroughly and accessible from the web site through the API documentation.
The web site also provides installation guide and number of tutorials for end
users, algorithm developers, and research scientists.

Black-box approach

Data mining algorithms are usually implemented in a “black-box” manner. This
means that the user defines input data and parameters (if needed) for the
algorithm, and the algorithm produces a model. The user has no other
possibilities to modify the algorithm to better adjust to data. The “black-box”
approach is satisfying for most users. On the other hand, implementation of
algorithms as a “black-box” makes it more difficult for algorithm designers who
want to use parts of the existing algorithm to create new algorithms. The
structure of black box algorithms demands reimplementation of algorithms and
their parts from the scratch. “Black-box” implemented algorithms are harder to
evaluate and analyze, because it is not clear which part of the algorithm has
influence on overall algorithm performance.

http://www.whibo.fon.rs/

White-Box approach

The “white-box” approach allows the user to define parameters, and inputs (as
in black-box algorithms) of an algorithm, but also the building blocks (i.e.
components) of the algorithm. These components are solutions for typical sub-
problems consistently encountered in the process of constructing the
appropriate model for the data at hand. This way, algorithmic solution
becomes more data and user driven, since it enables the users to intelligently
select components of the algorithm which best address the problems of the
specific data. Moreover, good ideas from algorithms are saved within
components, so they can be used in other algorithms.

White-box approach offers several advances in comparison with black box
algorithms (Sonnenburg et al, 2007).

 Combining advantages of various algorithms,

 Comparing algorithms in more details,

 Building on existing resources with less re-implementation,

 Easier “bug” detection on the level of components,

 Collaborative emergence of standards.

WhiBo component repository and Generic decision
tree (GDT) algorithm

WhiBo includes a reusable component repository for design of decision tree
algorithms. These components were extracted from “black-box” algorithms:

 ID3 (Quinlan JR, 1986),

 C4.5 (Quinlan JR, 1993),

 CART (Breiman et al, 1984),

 CHAID (Kass GV, 1980)

and improvements (distance measure identified in (Mantaras, 1991).
Description of analyzed algorithms and partial improvements could be found in
Appendix A.

Sub-problems and solutions (reusable components)

In WhiBo algorithms are built by choosing building blocks (i.e. reusable
components - RCs) for each sub-problem. The problem of building decision tree
model is divided into sub-problems that are generalized algorithm structures
with the same input and output structure identified in all analyzed algorithms.
Every sub-problem with defined inputs and outputs can be solved in many
ways, i.e. with various a reusable components (RCs). That means that every RC
solves a specific sub-problem which has the same I/O.

Table 1 shows identified sub-problems and components with their
corresponding I/O that are currently implemented in WhiBo.

Sub-problem Reusable component Input Output

Remove
insignificant
attributes

F TEST (numerical
attributes)

CHI SQUARE TEST
(categorical attributes)

Dataset in
current node

Dataset in current
node (reduced)

Create split
(Numerical)

BINARY

Dataset in
current node

A split candidate
Create split

(Categorical)

BINARY

MULTIWAY

SIGNIFICANT

Evaluate split

CHI SQUARE

A split
candidate

The best split in
current node

INFORMATION GAIN

GAIN RATIO

GINI

DISTANCE MEASURE

Stop criteria
MAXIMAL TREE DEPTH

Current tree
model

Signal for stopping
tree growth in
current node

MINIMAL NODE SIZE

Prune tree
PESSIMISTIC ERROR

PRUNING (PEP)
Current tree

model
Pruned tree model

MIN LEAF SIZE (MLS)

Table 1 - Sub-problems, reusable components with standardized I/O for Generic decision
tree algorithm

Sub-problems and reusable components implemented in Whibo are described
according to Tracz (1990) in Appendix B.

Generic decision tree (GDT) structure

The GDT structure proposed in WhiBo is shown on Figure 1. For sub-problems
that are bolded it is necessary to define a sub-problem, while for other sub-
problems RCs are optional to use. “Create split” (numerical, and categorical)
and “Evaluate split” RCs are necessary for decision tree growth. Besides that,
there are no restrictions for combinations of RCs.

Create split

(Numerical)

Evaluate split

Create split

(Categorical)

Prune tree

Remove insignificant

attributes

Stop criteria

For every node

Figure 1 - Generic decision tree (GDT) algorithm

The proposed GDT structure and component repository enables:

 Reconstruction of the original algorithms in the parts that were analyzed.
 Creation of hybrid algorithms with components.
 Extension of the component repository by analyzing new algorithms or

partial improvements which can be incorporated in sub-problems with
the same input-output structure.

 Definition of new sub-problems which can be incorporated in GDT
structure.

WHIBO environment

WhiBo environment currently implements two operator groups:

 Trees – contains Generic decision tree operator and WhiBoGDT
Evolutionary Search operator.

 Validation – contains Custom cross validation with log and Significance
5X2 cross validation F-test operators.

Figure 2 - WhiBo operator group

WHIBO generic decision tree (GDT) operator GUI manual
WhiBo generic decision tree user interface contains four panels:

Left panel contains an array of buttons. Every button represents a concrete
sub-problem for a decision-tree algorithm design.

Central panel contains:

 Available RCs of selected sub-problem from the left panel.

 Available parameters (if available) for selected RCs.

 Buttons for including or disabling a RC from the current decision tree
structure.

Right panel shows current state of user designed algorithm (saved sub-
problems, RCs and parameters).

Top panel contains options for creating new, saving current or opening existing
generic decision tree algorithm.

Figure 3 - WhiBo GDT user interface for design of decision tree algorithms

General procedure for designing new algorithms:

 Select sub-problem from left panel. When sub-problem is selected,
possible solutions (RCs) are shown in central panel.

 Select RC (or components if multiple) for sub-problem from central
panel. If parameters for component(s) are available, they will be shown
in bottom part of central panel with their default values.

 Click on save component button. Components and defined parameters
for selected sub-problem will be shown in the right panel as part of
current GDT algorithm.

 This procedure should be repeated for every sub-problem (Create split
and Evaluate split sub-problem are basic for decision tree growth and
they must be defined. Definition of other sub-problems is optional).
When all sub-problems, components and parameters are defined
algorithm should be saved on file system (click on save button from
upper panel). By default algorithms are saved with .wba (white box
algorithm) extension.

WHIBO generic decision tree (GDT) evolutionary search
operator GUI manual
WHIBO generic decision tree (GDT) evolutionary search operator implements
genetic algorithm which selects reusable components defined in .ass (algorithm
search space) file.

Parameters:

 Algorithm search space file location – location of .ass file

 Parameters – list of parameters of genetic algorithm

 Wba file path macro name – macro pointing to .wba file

 Log file path – path where log file will be saved

Figure 4 - Parameters panel for WhiBo GDT Evolutionary Search

Similarly like in WhiBo generic decision tree user interface contains four panels:

Left panel contains an array of buttons. Every button represents a concrete
sub-problem for a decision-tree algorithm design.

Central panel contains:

 Available RCs of selected sub-problem from the left panel.

 Available parameters (if available) for selected RCs.

 Buttons for including or disabling a RC from the current decision tree
structure.

Right panel shows current state of user designed algorithm (saved sub-
problems, RCs and parameters).

Top panel contains options for creating new, saving current or opening existing
generic decision tree algorithm.

Figure 5 - WhiBo GDT evolutionary search user interface for design of algorithm search

space

General procedure for designing algorithm search space:

 Select sub-problem from left panel. When sub-problem is selected,
possible solutions (RCs) are shown in central panel.

 Select RC (or components if multiple) for sub-problem from central
panel. If parameters for component(s) are available, they will be shown
in bottom part of central panel with lower and upper values selected.
User can modify these values.

 Click on save component button. Components and defined parameters
for selected sub-problem will be shown in the right panel as part of
current GDT algorithm.

 This procedure should be repeated for every sub-problem (Create split
and Evaluate split sub-problem are basic for decision tree growth and
they must be defined. Definition of other sub-problems is optional).
When all sub-problems, components and parameters are defined

algorithm should be saved on file system (click on save button from
upper panel). By default algorithms are saved with .ass (algorithm search
space) extension.

After definition of algorithm search space parameters for genetic algorithm
should be defined.

Parameters:

 MAX_ALLOWED_EVOLUTIONS – maximal numbers of generations of
genetic algorithms (default value - 50).

 POPULATION_SIZE – number of units (decision trees) in one generation
(default value - 30).

 MUTATION_RATE – percentage of genes (components) will be changed
(default value - 6).

 CROSSOVER_RATE – rate of crossover of chromosomes in genetic
algorithm (default value – 0.35)

 SWITCH_FROM_SURROGATE_PERCENTAGE_EVOLUTIONS – defines how
many units should be removed from previous generation (default value –
0.4)

 SURROGATE_PERCENTAGE – defines how many units should be selected
from previous generation (default value – 0.4)

 mutateComponents – boolean value indicating weather reusable
components should be mutated (default value - true).

 mutateParameters – boolean value indicating weather parameters
should be mutated (default value - true).

 componentsMutationRate – mutation rate of components (default value
- 1).

 parametersMutationRate – mutation rate of parameters (default value -
1).

Figure 6 - Parameters of genetic algorithm

WHIBO testing environment manual
WhiBo provides operators for testing performance and significance of
differences in algorithm performance.

Custom cross validation with log - implements cross validation with custom
defined number of folds and number of iterations and also enables writing
results in log in CSV format. The results are written in average, but also for
every fold and iteration. This operator writes accuracy of classifier, but also:
Maximum tree depth, weighted average tree depth, Total nodes, Total leaves,
and Execution time.

Parameters:

 Average_performances_only – check if there is no need for logging the
results for every fold and iteration.

 Algorithm_name – name of the algorithm.

 Dataset_name – name of the dataset.

 Number_of_folds – number of folds for cross-validation.

 Number_of_repetitions – number of repetitions for cross-validation.

 Sampling_type – stratified sampling, linear sampling or shuffled
sampling.

 Log_file_details – file path for logging detailed results.

 Log_file_averages - file path for logging average results.

Figure 7 - Custom cross validation with log operator with parameters

Significance 5X2 cross validation F-test – This is the best significance tester for
classifiers according to (Salzberg, 1999). The 5x2 cross validation F-test
(Alpaydin E. (1999)) is testing significance of differences in algorithm
performance.

 Parameters:

 Alpha – significance parameter (Default value – 0.05).

 Local random seed – number used for initialization of pseudorandom
number generator.

 Sampling_type – stratified sampling, linear sampling or shuffled
sampling.

Figure 8 - Significance 5X2cv F-test operator with parameters

Application examples

WhiBo GDT is implemented as RapidMiner operator. WhiBo decision tree
operators require ExampleSet as input and produce TreeModel and ExampleSet
on output, so they are compatible with all Rapid miner’s evaluation and
visualization operators.

For these examples we use “Iris” dataset from UCI repository as a data source
(definition of data source can be done through RapidMiner’s sample data
repository).

Figure 9 - Basic definition of RapidMiner process

On the lower left side of the screen local repository can be seen. From there,
”Iris” dataset was dragged to Main Process panel. With that step input
ExampleSet is defined.

White-box component based design and application
Using WhiBo GDT with RapidMiner will be explained on examples of creating
well-known algorithms, modifying these algorithms and designing new
algorithms.

When ExampleSet is defined, add GDT operator to root process. GDT can be
found in WhiBo/GDT Operators operator group.

Figure 10 - Adding GDT operator into stream

When the example source is defined and Generic Tree operator is added in
process, new generic decision tree can be designed, by clicking on Design new
algorithm button.

Figure 11 - Parameters panel for GDT operator

Recreation of well-known algorithms with component based
approach
Application of white-box approach will be first explained on recreation of well-
known algorithms.

CART algorithm

First, define Create split sub-problem:

 Click on Create split sub-problem on the left panel.

 Select BinaryNumerical and BinaryCategorical components from central
panel (multiple components for one sub-problem are selected by holding
CTRL key and clicking on components).

 Click on save component button from central panel.

Figure 12 - Definition of Create split sub-problem for CART algorithm

On the right panel defined components for a sub-problem is visualized through
a Tree view (Figure above).

Next step is definition of evaluate split sub-problem.

 Click on Evaluate split sub-problem.

 Select Gini index component.

 Click on save component button.

Figure 13 - Definition of Evaluate split sub-problem for CART algorithm

Now, the basic components for CART algorithm are defined. Before saving the
algorithm we will define Stop criteria sub-problem:

 Click on Stop criteria sub-problem.

 Select Tree depth component

 Set Tree_Depth parameter on 5 (default value is 10).

 Click on save component button.

Figure 14 - Definition of Stop criteria sub-problem for CART algorithm

Finally Cart algorithm with tree depth stopping criteria is defined and can be
saved on file system.
Click on Save algorithm button from upper panel.

Figure 15 - Saving CART algorithm on file system

After saving algorithm it must be loaded in GDT GUI clicking on folder button in
parameters panel.

Figure 16 - Loading CART algorithm in GDT operator

When stream is executed, graphic a text tree model will be shown.

Figure 17 - Result of executed CART algorithm on Iris dataset

C4.5 algorithm
First, define Create split sub-problem:

 Click on Create split sub-problem on the left panel.

 Select BinaryNumerical and MultiwayCategorical components from
central panel (multiple components for one sub-problem are selected by
holding CTRL key and clicking on components)

 Click on save component button from central panel

Figure 18 - Definition of Create split sub-problem for C4.5 algorithm

Second, define Create split sub-problem:

 Click on Evaluate split sub-problem on the left panel.

 Select GainRatio component from central panel.

 Click on save component button from central panel.

Figure 19 - Definition of Evaluate split sub-problem for C4.5 algorithm

Third, define Stop criteria sub-problem:

 Click on Stop criteria sub-problem on the left panel.

 Select TreeDepth component from central panel.

 Set Tree_Depth parameter for example on 10.

 Click on save component button from central panel.

Figure 20 - Definition of Stop criteria sub-problem for C4.5 algorithm

Fourth, define Prune tree sub-problem:

 Click on Prune tree sub-problem on the left panel.

 Select PessimisticError component from central panel.

 Set Confidence_Level parameter on 0.2.

 Click on save component button from central panel.

Figure 21 - Definition of Prune tree sub-problem for C4.5 algorithm

Finally, C4.5 algorithm is defined and can be saved on file system. Click on Save
algorithm button from upper panel. When algorithm is defined, load it from file
system and execute stream.

Figure 22 - Loading C4.5 algorithm in GDT operator

When stream is executed, graphic a text tree model will be shown.

Figure 23 - Result of executed C4.5 algorithm on Iris dataset

CHAID algorithm

First, define Create split sub-problem:

 Click on Create split sub-problem on the left panel.

 Select BinaryNumerical and SignificantCategorical components from
central panel (multiple components for one sub-problem are selected by
holding CTRL key and clicking on components)

 Set default parameters Merge_Alpha_Value and Split_Alpha_Value for
SignificantCategoricalComponent.

 Click on Save component button from central panel.

Figure 24 - Definition of Create split sub-problem for CHAID algorithm

Second, define Evaluate split sub-problem:

 Click on Evaluate split sub-problem on the left panel.

 Select ChiSquare component from central panel.

 Click on save component button from central panel.

Figure 25 - Definition of Evaluate split sub-problem for CHAID algorithm

Third, define Stop criteria sub-problem:

 Click on Stop criteria sub-problem on the left panel.

 Select TreeDepth component from central panel.

 Set Tree_Depth parameter for example on 5.

 Click on save component button from central panel.

Figure 26 - Definition of Stop criteria sub-problem for CHAID algorithm

Fourth, define Prune tree sub-problem:

 Click on Prune tree sub-problem on the left panel.

 Select PessimisticError component from central panel.

 Set Confidence_Level parameter for example on 0.2.

 Click on save component button from central panel.

Figure 27 - Definition of Prune tree sub-problem for CHAID algorithm

Finally, CHAID algorithm is defined and can be saved on file system. Click on
Save algorithm button from upper panel. When algorithm is defined, load it
from file system and execute stream.

Figure 28 - Loading CHAID algorithm in GDT operator

When stream is executed, graphic a text tree model will be shown.

Figure 29 - Result of executed CHAID algorithm on Iris dataset

Modifying generic decision tree algorithms
Algorithms created through WhiBo interface could be easily modified by
parameters, sub-problems or components. WhiBo algorithms are saved on a
file system by .wba (WhiBo algorithm) extension. Existing algorithms can be
loaded for editing by clicking on Open algorithm button from the top panel of
WhiBo interface.

Figure 30 - Opening existing algorithm for modification

In this section it will be explained modifying of CHAID algorithm that was
created and saved in previous example.

Figure 31 - Selecting existing algorithm from file system

When existing algorithm is opened, its sub-problems and RCs are shown in a
tree view on the right panel of WhiBo interface.

Figure 32 - Loaded algorithm in GDT GUI

Modifying of existing algorithms is done the same way as creating of new
algorithms. In this example we will show how to

 modify parameter of already defined component,

 change component of defined sub-problem,

 adding new sub-problem and component for its solution.

Modifying parameters

In this example we will modify Merge_Alpha_Value and Split_Alpha_Value
parameters of Create split – SignificantCategorical component and Tree_Depth
parameter of Stop criteria - TreeDepth:

 Click on Create split sub-problem on the left panel.

 Set Merge_Alpha_Value on 0.03.

 Set Split_Alpha_Value on 0.02.

 Click on save component button from central panel.

 Click on StopCriteria sub-problem on the left panel.

 Set Tree_Depth parameter on 4.

 Save algorithm as CHAIDModifiedParameters by clicking on Save
algorithm button from top panel.

Result from executed algorithm is shown on figure below.

Figure 33 - Loaded algorithm in GDT GUI

Replacing components for sub-problem

In this example we will replace Evaluation measure component in
CHAIDModifiedParameters algorithm that is created in previous subsection.

 Click on Evaluate split sub-problem on the left panel.

 Select DistanceMeasure component from central panel.

 Click on save component button from central panel.

 Save algorithm as CHAIDModifiedParametersDistance by clicking on Save
algorithm button from top panel.

Figure 34 - Replacing components in CHAID algorithm in GDT GUI

Result from executed algorithm is shown on figure below.

Figure 35 - Result of modified CHAID algorithm

Adding new sub-problem and component to an existing algorithm

Besides changing of parameters and components existing algorithms could be
extended with new sub-problems and components. We will explain this
extension by adding Prune tree sub-problem to CHAID algorithm that is defined
in previous subsection.

 Load CHAID algorithm from file system by clicking on Open algorithm
button from top panel.

 Select Prune tree sub-problem from left panel.

 Click disable.

 Select MinLeafSize component from central panel.

 Set Size_Of_Leaf parameter to 15.

 Click on save component button from central panel.

 Save algorithm as CHAIDPrune by clicking on Save algorithm button from
top panel.

Figure 36 - Adding new sub-problem in existing algorithm

Result from executed algorithm is shown on figure below.

Figure 37 - Result of executed CHAID with prune algorithm on Iris dataset

Besides recreation and modification of existing algorithms WhiBo also enables:

 Design of new algorithms, by combination of components that are
derived from well-known algorithms (C4.5, CART, CHAID) or partial
algorithm improvements (e.g. distance measure).

 Incorporating partial improvements of algorithms that can be found in
literature, but are not incorporated in any specific algorithm (e.g.
Distance evaluation measure).

 Incorporating a new sub-problem in an algorithm (e.g. Remove
insignificant attributes)

 Multiple component selection for sub-problem - it is possible to define
more Splitting components stopping criteria.

Generic decision tree evolutionary search design and
application
WhiBo evolutionary search GDT is implemented as RapidMiner operator chain.
WhiBo evolutionary search decision tree operators require ExampleSet as input
and produce TreeModel, ExampleSet and Performance on output.

For these examples we use “Weighting” dataset from RapidMiner’s sample
data repository.

Figure 38 - Main process for WhiBo evolutionary search decision tree

Main process should contain at least three operators. Those are dataset (in this
case Weighting dataset), Set Macro and WhiBo GDT Evolutionary Search. Since
WhiBo GDT Evolutionary Search is operator chain it contains subprocess. Inside
of this subprocess Generic decision tree should be placed.

After loading dataset Macro must be provided. Macro points to WhiBo
algorithm file which is needed to GDT Evolutionary Search operator.

Figure 39 - Parameters panel of Set Macro operator

GDT Evolutionary Search operator is set after this. Previously defined Macro is
set in wba file path macro name parameter text box. Also, log file path is
defined. In that file results will be stored. Setup for algorithm search space and
parameters of genetic algorithms are below.

Figure 40 - Parameters panel of GDT Evolutionary Search operator

Algorithm search space must be specified.

First, define Create split sub-problem space:

 Click on Create split sub-problem on the left panel.

 Select all components from central panel (multiple components for one
sub-problem are selected by holding CTRL key and clicking on
components)

 Set default lower and upper values for Merge_Alpha_Value and
Split_Alpha_Value for SignificantCategoricalComponent.

 Click on Save component button from central panel.

Figure 41 - Definition of Create split components for algorithm search space

Second, define Evaluate split sub-problem:

 Click on Evaluate split sub-problem on the left panel.

 Select ChiSquare, DistanceMeasure and GainRatio component from
central panel.

 Click on save component button from central panel.

Figure 42 - Definition of Evaluate split components for algorithm search space

Third, define Stop criteria sub-problem:

 Click on Stop criteria sub-problem on the left panel.

 Select TreeDepth component from central panel.

 Set Tree_Depth parameter from 1 to 10.

 Click on save component button from central panel.

Figure 43 - Definition of Stop criteria components for algorithm search space

Fourth, define Prune tree sub-problem:

 Click on Prune tree sub-problem on the left panel.

 Select PessimisticError component from central panel.

 Set Confidence_Level parameter from 0 to 0.5.

 Click on save component button from central panel.

Figure 44 - Definition of Prune tree components for algorithm search space

Next step in configuring GDT Evolutionary Search operator is parameter
settings of genetic algorithm by clicking Edit List button next to parameters in
Parameters panel:

 Set MAX_ALLOWED_POPULATION to 10.

 Set POPULATION_SIZE to 5

 Set mutateParameters to true.

 Click on Apply button.

Figure 45 - Definition of parameters for genetic algorithm

Inside GDT Evolutionary Search operator is cross validation operator, and inside
cross validation there is GDT operator in Training section, while Apply Model
and Performance operators are in Testing section. GDT should have valid .wba
file, with defined Create split and Evaluate split components.

Figure 46 - GDT Evolutionary Search subprocess

Result from executed algorithm is shown on figures below.

Figure 47 - Result of executed GDT Evolutionary Search example

Figure 48 - Performance of executed GDT Evolutionary Search example

Figure 49 - Log file of executed GDT Evolutionary Search example

Modifying algorithm search space
Modifying of existing algorithm search space is done the same way as creating
of new algorithms, by clicking Design algorithm button. In this example we will
show how to

 modify parameter of already defined component,

 change component of defined sub-problem,

 adding new sub-problem and component for its solution.

Modifying parameters
In this example we will modify Merge_Alpha_Value parameters of Create split –
SignificantCategorical component:

 Click on Create split sub-problem on the left panel.

 Set Merge_Alpha_Value from 0.1 to 0.4.

 Click on save component button from central panel.

 Save algorithm search space.

Figure 50 - Modifying parameters of Merge_Alpha_Value

Replacing components for sub-problem
Replacing components for sub-problem is done in following way:

 Click on Evaluate split sub-problem on the left panel.

 Add InformationGain component (using CTRL button) from central panel.

 Remove GainRatio component (using CTRL button).

 Click on save component button from central panel.

 Save algorithm search space.

Figure 51 - Replacing components in GDT Evolutionary Search

Adding new sub-problem and component to an existing algorithm

Besides changing of parameters and components existing algorithm search
space could be extended with new sub-problems and components. We will
explain this extension by adding Remove insignificant attributes sub-problem.

 Select Remove insignificant attributes sub-problem from left panel.

 Select FTestNumerical component from central panel.

 Leave default paramaters setting.

 Click on save component button from central panel.

 Save algorithm search space.

Figure 52 - Adding new subproblem in GDT Evolutionary Search

After conducting experiment with this algorithm search space setup results
shown on figures below were gathered.

Figure 53 - Performance of executed GDT Evolutionary Search example

Figure 54 - Log file of executed GDT Evolutionary Search example

