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Introduction 

WhiBo is a RapidMiner (Mierswa et al. 2006) plug-in for “white-box” component 
based design of decision tree algorithms for classification and evaluation of these 
algorithms and their parts. It is intended to be used by typical end users, research 
scientists and algorithm developers. The main idea of WhiBo is to offer 
standardized components for algorithm design which will enable simple design 
and performance testing, easy extension of the component repository and 
creation of new generic algorithms. Currently, WhiBo provides one generic 
algorithm, a graphical interface and a component repository for design of decision 
trees for classification. A framework for performance testing is implemented in 
WhiBo as well. WhBo plug-in and source code, is available from 
www.whibo.fon.rs. Source code is documented thoroughly and accessible from 
the web site through the API documentation. The web site also provides 
installation guide and number of tutorials for end users, algorithm developers, 
and research scientists. 

Black-box approach 

Data mining algorithms are usually implemented in a “black-box” manner. This 
means that the user defines input data and parameters (if needed) for the 
algorithm, and the algorithm produces a model. The user has no other 
possibilities to modify the algorithm to better adjust to data. The “black-box” 
approach is satisfying for most users. On the other hand, implementation of 
algorithms as a “black-box” makes it more difficult for algorithm designers who 
want to use parts of the existing algorithm to create new algorithms. The 
structure of black box algorithms demands reimplementation of algorithms and 
their parts from the scratch. “Black-box” implemented algorithms are harder to 
evaluate and analyze, because it is not clear which part of the algorithm has 
influence on overall algorithm performance.  
  

http://www.whibo.fon.rs/
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White-Box approach 

The “white-box” approach allows the user to define parameters, and inputs (as in 
black-box algorithms) of an algorithm, but also the building blocks (i.e. 
components) of the algorithm. These components are solutions for typical sub-
problems consistently encountered in the process of constructing the appropriate 
model for the data at hand. This way, algorithmic solution becomes more data 
and user driven, since it enables the users to intelligently select components of 
the algorithm which best address the problems of the specific data. Moreover, 
good ideas from algorithms are saved within components, so they can be used in 
other algorithms. 
 
White-box approach offers several advances in comparison with black box 
algorithms (Sonnenburg et al, 2007). 
 

 Combining advantages of various algorithms, 

 Comparing algorithms in more details, 

 Building on existing resources with less re-implementation, 

 Easier “bug” detection on the level of components, 

 Collaborative emergence of standards. 

WhiBo component repository and Generic decision tree 
(GDT) algorithm 

WhiBo includes a reusable component repository for design of decision tree 
algorithms. These components were extracted from “black-box” algorithms: 

 ID3 (Quinlan JR, 1986),  

 C4.5 (Quinlan JR, 1993),  

 CART (Breiman et al, 1984),  

 CHAID (Kass GV, 1980)  
 
and improvements (distance measure identified in (Mantaras, 1991). Description 
of analyzed algorithms and partial improvements could be found in Appendix A. 
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Sub-problems and solutions (reusable components)  

In WhiBo algorithms are built by choosing building blocks (i.e. reusable 
components - RCs) for each sub-problem. The problem of building decision tree 
model is divided into sub-problems that are generalized algorithm structures with 
the same input and output structure identified in all analyzed algorithms. Every 
sub-problem with defined inputs and outputs can be solved in many ways, i.e. 
with various a reusable components (RCs). That means that every RC solves a 
specific sub-problem which has the same I/O. 
 
Table 1 shows identified sub-problems and components with their corresponding 
I/O that are currently implemented in WhiBo. 
 

Sub-problem Reusable component Input Output 

Remove 
insignificant 
attributes 

F TEST (numerical 
attributes) 

CHI SQUARE TEST 
(categorical attributes) 

Dataset in 
current node 

Dataset in current 
node (reduced) 

Create split 
(Numerical) 

BINARY 

Dataset in 
current node 

A split candidate 
Create split 

(Categorical) 

BINARY 

MULTIWAY 

SIGNIFICANT 

Evaluate split 

CHI SQUARE 

A split 
candidate 

The best split in 
current node 

INFORMATION GAIN 

GAIN RATIO 

GINI 

DISTANCE MEASURE 

Stop criteria 
MAXIMAL TREE DEPTH 

Current tree 
model 

Signal for stopping 
tree growth in 
current node 

MINIMAL NODE SIZE 

Prune tree 
PESSIMISTIC ERROR 

PRUNING (PEP) 
Current tree 

model 
Pruned tree model 

MIN LEAF SIZE (MLS) 

Table 1 - Sub-problems, reusable components with standardized I/O for Generic decision tree 
algorithm 

Sub-problems and reusable components implemented in Whibo are described   
according to Tracz (1990) in Appendix B.     
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Generic decision tree (GDT) structure 

The GDT structure proposed in WhiBo is shown on Figure 1. For sub-problems 
that are bolded it is necessary to define a sub-problem, while for other sub-
problems RCs are optional to use. “Create split” (numerical, and categorical) and 
“Evaluate split” RCs are necessary for decision tree growth. Besides that, there 
are no restrictions for combinations of RCs. 

 

Create split

(Numerical)

Evaluate split

Create split

(Categorical)

Prune tree

Remove insignificant 

attributes

Stop criteria

For every node

 
Figure 1 - Generic decision tree (GDT) algorithm 

The proposed GDT structure and component repository enables: 

 Reconstruction of the original algorithms in the parts that were analyzed. 
 Creation of hybrid algorithms with components. 
 Extension of the component repository by analyzing new algorithms or 

partial improvements which can be incorporated in sub-problems with the 
same input-output structure.  

 Definition of new sub-problems which can be incorporated in GDT 
structure.   
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Installation guide 

There are two ways of plug-in installation. First way is over RapidMiner 
marketplace, and is done in following steps: 
 

1. Open RapidMiner. 
2. Press Help->Updates and Extensions (Marketplace). 
3. Enter WhiBo as search term. 
4. Click Search button. 
5. Select WhiBo extension for installation (or update). 
6. Press Install x packages button. 

 

 
Figure 2 – RapidMiner Marketplace 

7. Read and accept the terms of license. 
8. Press Install x packages button. 
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Figure 3 – Confirm license dialog 

RapidMiner will install plugin and restart in order to apply changes. 
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Second way: When RapidMiner is downloaded, installation of WhiBo can be 
completed in two simple steps.   
 
1. Download WhiBo.jar archive from download section of WhiBo page 
http://www.whibo.fon.rs. 
   
2.  Place WhiBo.jar file in Rapid Miner’s plugin-folder :  
 …Program Files\Rapid-I\RapidMiner\lib\plugins  
  

 
Figure 4 - Placing WhiBo plug-in 

If both steps were done correctly user can start the script by double clicking, and  
RapidMiner with WhiBo environment will start. 

http://www.whibo.fon.rs/
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WHIBO environment 

 
WhiBo environment currently implements two operator groups: 
 

 Trees – contains Generic decision tree operator and WhiBoGDT Evolutionary 
Search operator. 

 Validation – contains Custom cross validation with log and Significance 5X2 
cross validation F-test operators. 

 

 
Figure 5 - WhiBo operator group  
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WHIBO generic decision tree (GDT) operator GUI manual 

WhiBo generic decision tree user interface contains four panels:  
  
Left panel contains an array of buttons. Every button represents a concrete sub-
problem for a decision-tree algorithm design.  
 
Central panel contains: 

 Available RCs of selected sub-problem from the left panel.  

 Available parameters (if available) for selected RCs. 

 Buttons for including or disabling a RC from the current decision tree 
structure. 

 
Right panel shows current state of user designed algorithm (saved sub-problems, 
RCs and parameters).  
 
Top panel contains options for creating new, saving current or opening existing 
generic decision tree algorithm.  
   

 
Figure 6 - WhiBo GDT user interface for design of decision tree algorithms 
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General procedure for designing new algorithms:  
  

 Select sub-problem from left panel. When sub-problem is selected, possible 
solutions (RCs) are shown in central panel.   

 

 Select RC (or components if multiple) for sub-problem from central panel. If 
parameters for component(s) are available, they will be shown in bottom 
part of central panel with their default values.    

 

 Click on save component button. Components and defined parameters for 
selected sub-problem will be shown in the right panel as part of current 
GDT algorithm.  

 

 This procedure should be repeated for every sub-problem (Create split and 
Evaluate split sub-problem are basic for decision tree growth and they must 
be defined. Definition of other sub-problems is optional). When all sub-
problems, components and parameters are defined algorithm should be 
saved on file system (click on save button from upper panel). By default 
algorithms are saved with .wba (white box algorithm) extension. 
 

WHIBO generic decision tree (GDT) evolutionary search 
operator GUI manual 

WHIBO generic decision tree (GDT) evolutionary search operator implements 
genetic algorithm which selects reusable components defined in .ass (algorithm 
search space) file. 
 
Parameters: 

 Algorithm search space file location – location of .ass file 

 Parameters – list of parameters of genetic algorithm 

 Wba file path macro name – macro pointing to .wba file 

 Log file path – path where log file will be saved 
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Figure 7 - Parameters panel for WhiBo GDT Evolutionary Search 

Similarly like in WhiBo generic decision tree user interface contains four panels: 
 
Left panel contains an array of buttons. Every button represents a concrete sub-
problem for a decision-tree algorithm design.  
 
Central panel contains: 

 Available RCs of selected sub-problem from the left panel.  

 Available parameters (if available) for selected RCs. 

 Buttons for including or disabling a RC from the current decision tree 
structure. 

 
Right panel shows current state of user designed algorithm (saved sub-problems, 
RCs and parameters).  
 
Top panel contains options for creating new, saving current or opening existing 
generic decision tree algorithm.  
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Figure 8 - WhiBo GDT evolutionary search user interface for design of algorithm search space 

General procedure for designing algorithm search space:  
  

 Select sub-problem from left panel. When sub-problem is selected, possible 
solutions (RCs) are shown in central panel.   

 

 Select RC (or components if multiple) for sub-problem from central panel. If 
parameters for component(s) are available, they will be shown in bottom 
part of central panel with lower and upper values selected. User can modify 
these values. 

 

 Click on save component button. Components and defined parameters for 
selected sub-problem will be shown in the right panel as part of current 
GDT algorithm.  

 

 This procedure should be repeated for every sub-problem (Create split and 
Evaluate split sub-problem are basic for decision tree growth and they must 
be defined. Definition of other sub-problems is optional). When all sub-
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problems, components and parameters are defined algorithm should be 
saved on file system (click on save button from upper panel). By default 
algorithms are saved with .ass (algorithm search space) extension. 
 

After definition of algorithm search space parameters for genetic algorithm 
should be defined. 
 
Parameters: 
 

 MAX_ALLOWED_EVOLUTIONS – maximal numbers of generations of 
genetic algorithms (default value - 50). 

 POPULATION_SIZE – number of units (decision trees) in one generation 
(default value - 30). 

 MUTATION_RATE – percentage of genes (components) will be changed 
(default value - 6). 

 CROSSOVER_RATE – rate of crossover of chromosomes in genetic algorithm 
(default value – 0.35) 

 SWITCH_FROM_SURROGATE_PERCENTAGE_EVOLUTIONS – defines how 
many units should be removed from previous generation (default value – 
0.4) 

 SURROGATE_PERCENTAGE – defines how many units should be selected 
from previous generation (default value – 0.4) 

 mutateComponents – boolean value indicating weather reusable 
components should be mutated (default value - true). 

 mutateParameters – boolean value indicating weather parameters should 
be mutated (default value - true). 

 componentsMutationRate – mutation rate of components (default value - 
1). 

 parametersMutationRate – mutation rate of parameters (default value - 1). 
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Figure 9 - Parameters of genetic algorithm 

WHIBO testing environment manual 

WhiBo provides operators for testing performance and significance of differences 
in algorithm performance. 
 
Custom cross validation with log - implements cross validation with custom 
defined number of folds and number of iterations and also enables writing results 
in log in CSV format. The results are written in average, but also for every fold and 
iteration. This operator writes accuracy of classifier, but also: Maximum tree 
depth, weighted average tree depth, Total nodes, Total leaves, and Execution 
time. 
 
Parameters: 

 Average_performances_only – check if there is no need for logging the 
results for every fold and iteration. 

 Algorithm_name – name of the algorithm. 

 Dataset_name – name of the dataset. 

 Number_of_folds – number of folds for cross-validation. 

 Number_of_repetitions – number of repetitions for cross-validation. 
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 Sampling_type – stratified sampling, linear sampling or shuffled sampling. 

 Log_file_details – file path for logging detailed results. 

 Log_file_averages - file path for logging average results. 
 

 
Figure 10 - Custom cross validation with log operator with parameters 

Significance 5X2 cross validation F-test – This is the best significance tester for 
classifiers according to (Salzberg, 1999). The 5x2 cross validation F-test (Alpaydin 
E. (1999)) is testing significance of differences in algorithm performance.  
 
 Parameters: 
 

 Alpha – significance parameter (Default value – 0.05). 

 Local random seed – number used for initialization of pseudorandom 
number generator. 

 Sampling_type – stratified sampling, linear sampling or shuffled 
sampling. 
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Figure 11 - Significance 5X2cv F-test operator with parameters  

Application examples 

WhiBo GDT is implemented as RapidMiner operator. WhiBo decision tree 
operators require ExampleSet as input and produce TreeModel and ExampleSet 
on output, so they are compatible with all Rapid miner’s evaluation and 
visualization operators.   
 
For these examples we use “Iris” dataset from UCI repository as a data source 
(definition of data source can be done through RapidMiner’s sample data 
repository). 
 

 
Figure 12 - Basic definition of RapidMiner process 
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On the lower left side of the screen local repository can be seen. From there, 
”Iris” dataset was dragged to Main Process panel. With that step input 
ExampleSet is defined. 

White-box component based design and application 

Using WhiBo GDT with RapidMiner will be explained on examples of creating well-
known algorithms, modifying these algorithms and designing new algorithms. 
 
When ExampleSet is defined, add GDT operator to root process. GDT can be 
found in WhiBo/GDT Operators operator group. 
 

 
Figure 13 - Adding GDT operator into stream 

 
When the example source is defined and Generic Tree operator is added in 
process, new generic decision tree can be designed, by clicking on Design new 
algorithm button. 
 

 
Figure 14 - Parameters panel for GDT operator 
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Recreation of well-known algorithms with component based 
approach 

Application of white-box approach will be first explained on recreation of well-
known algorithms. 
 

CART algorithm 

 
First, define Create split sub-problem: 

 Click on Create split sub-problem on the left panel. 

 Select BinaryNumerical and BinaryCategorical components from central 
panel (multiple components for one sub-problem are selected by holding 
CTRL key and clicking on components). 

 Click on save component button from central panel. 
 
 

 
Figure 15 - Definition of Create split sub-problem for CART algorithm 
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On the right panel defined components for a sub-problem is visualized through a 
Tree view (Figure above). 
 
Next step is definition of evaluate split sub-problem. 

 Click on Evaluate split sub-problem. 

 Select Gini index component. 

 Click on save component button. 
 

 
Figure 16 - Definition of Evaluate split sub-problem for CART algorithm 

Now, the basic components for CART algorithm are defined. Before saving the 
algorithm we will define Stop criteria sub-problem: 

 Click on Stop criteria sub-problem. 

 Select Tree depth component  

 Set Tree_Depth parameter on 5 (default value is 10). 

 Click on save component button. 
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Figure 17 - Definition of Stop criteria sub-problem for CART algorithm 

Finally Cart algorithm with tree depth stopping criteria is defined and can be 
saved on file system.  
Click on Save algorithm button from upper panel. 
 

 
Figure 18 - Saving CART algorithm on file system 
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After saving algorithm it must be loaded in GDT GUI clicking on folder button in 
parameters panel. 
 

 
Figure 19 - Loading CART algorithm in GDT operator 

When stream is executed, graphic a text tree model will be shown. 
 

 
Figure 20 - Result of executed CART algorithm on Iris dataset 
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C4.5 algorithm 

First, define Create split sub-problem: 
 

 Click on Create split sub-problem on the left panel. 

 Select BinaryNumerical and MultiwayCategorical components from central 
panel (multiple components for one sub-problem are selected by holding 
CTRL key and clicking on components) 

 Click on save component button from central panel 
 

 
Figure 21 - Definition of Create split sub-problem for C4.5 algorithm 
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Second, define Create split sub-problem: 
 

 Click on Evaluate split sub-problem on the left panel. 

 Select GainRatio component from central panel. 

 Click on save component button from central panel. 
 
 

 
Figure 22 - Definition of Evaluate split sub-problem for C4.5 algorithm 
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Third, define Stop criteria sub-problem: 
 

 Click on Stop criteria sub-problem on the left panel. 

 Select TreeDepth component from central panel. 

 Set Tree_Depth parameter for example on 10.  

 Click on save component button from central panel. 
 

 
Figure 23 - Definition of Stop criteria sub-problem for C4.5 algorithm 
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Fourth, define Prune tree sub-problem: 
 

 Click on Prune tree sub-problem on the left panel. 

 Select PessimisticError component from central panel. 

 Set Confidence_Level parameter on 0.2.  

 Click on save component button from central panel. 
 

 
Figure 24 - Definition of Prune tree sub-problem for C4.5 algorithm 

Finally, C4.5 algorithm is defined and can be saved on file system.  Click on Save 
algorithm button from upper panel. When algorithm is defined, load it from file 
system and execute stream. 
 

 
Figure 25 - Loading C4.5 algorithm in GDT operator 
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When stream is executed, graphic a text tree model will be shown. 
 

 
Figure 26 - Result of executed C4.5 algorithm on Iris dataset  
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CHAID algorithm 

 
First, define Create split sub-problem: 
 

 Click on Create split sub-problem on the left panel. 

 Select BinaryNumerical and SignificantCategorical components from central 
panel (multiple components for one sub-problem are selected by holding 
CTRL key and clicking on components) 

 Set default parameters Merge_Alpha_Value and Split_Alpha_Value for 
SignificantCategoricalComponent. 

 Click on Save component button from central panel. 
 

 
Figure 27 - Definition of Create split sub-problem for CHAID algorithm 
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Second, define Evaluate split sub-problem: 
 

 Click on Evaluate split sub-problem on the left panel. 

 Select ChiSquare component from central panel. 

 Click on save component button from central panel. 
 

 
Figure 28 - Definition of Evaluate split sub-problem for CHAID algorithm 
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Third, define Stop criteria sub-problem: 
 

 Click on Stop criteria sub-problem on the left panel. 

 Select TreeDepth component from central panel. 

 Set Tree_Depth parameter for example on 5.  

 Click on save component button from central panel. 
 

 
Figure 29 - Definition of Stop criteria sub-problem for CHAID algorithm 
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Fourth, define Prune tree sub-problem: 
 

 Click on Prune tree sub-problem on the left panel. 

 Select PessimisticError component from central panel. 

 Set Confidence_Level parameter for example on 0.2.  

 Click on save component button from central panel. 
 

 
Figure 30 - Definition of Prune tree sub-problem for CHAID algorithm 

Finally, CHAID algorithm is defined and can be saved on file system. Click on Save 
algorithm button from upper panel. When algorithm is defined, load it from file 
system and execute stream. 
 

 
Figure 31 - Loading CHAID algorithm in GDT operator 

When stream is executed, graphic a text tree model will be shown. 
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Figure 32 - Result of executed CHAID algorithm on Iris dataset  
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Modifying generic decision tree algorithms 

Algorithms created through WhiBo interface could be easily modified by 
parameters, sub-problems or components. WhiBo algorithms are saved on a file 
system by .wba (WhiBo algorithm) extension. Existing algorithms can be loaded 
for editing by clicking on Open algorithm button from the top panel of WhiBo 
interface.  
 

 
Figure 33 - Opening existing algorithm for modification 

In this section it will be explained modifying of CHAID algorithm that was created 
and saved in previous example.  
 

 
Figure 34 - Selecting existing algorithm from file system 

When existing algorithm is opened, its sub-problems and RCs are shown in a tree 
view on the right panel of WhiBo interface. 
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Figure 35 - Loaded algorithm in GDT GUI 

Modifying of existing algorithms is done the same way as creating of new 
algorithms. In this example we will show how to  

 modify parameter of already defined component,  

 change component of defined sub-problem, 

 adding new sub-problem and component for its solution. 
  



 

34 
 

Modifying parameters 

 
In this example we will modify Merge_Alpha_Value and Split_Alpha_Value 
parameters of Create split – SignificantCategorical component and Tree_Depth 
parameter of Stop criteria - TreeDepth: 
 

 Click on Create split sub-problem on the left panel. 

 Set Merge_Alpha_Value on 0.03. 

 Set Split_Alpha_Value on 0.02. 

 Click on save component button from central panel. 

 Click on StopCriteria sub-problem on the left panel. 

 Set Tree_Depth parameter on 4. 

 Save algorithm as CHAIDModifiedParameters by clicking on Save algorithm 
button from top panel. 
 

Result from executed algorithm is shown on figure below. 
 

 
Figure 36 - Loaded algorithm in GDT GUI 
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Replacing components for sub-problem 

 
In this example we will replace Evaluation measure component in 
CHAIDModifiedParameters algorithm that is created in previous subsection. 
 

 Click on Evaluate split sub-problem on the left panel. 

 Select DistanceMeasure component from central panel. 

 Click on save component button from central panel. 

 Save algorithm as CHAIDModifiedParametersDistance by clicking on Save 
algorithm button from top panel. 

 

 
Figure 37 - Replacing components in CHAID algorithm in GDT GUI 

Result from executed algorithm is shown on figure below. 
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Figure 38 - Result of modified CHAID algorithm 

Adding new sub-problem and component to an existing algorithm 

 
Besides changing of parameters and components existing algorithms could be 
extended with new sub-problems and components. We will explain this extension 
by adding Prune tree sub-problem to CHAID algorithm that is defined in previous 
subsection.  
 

 Load CHAID algorithm from file system by clicking on Open algorithm 
button from top panel. 

 Select Prune tree sub-problem from left panel. 

 Click disable. 

 Select MinLeafSize component from central panel. 

 Set Size_Of_Leaf parameter to 15. 

 Click on save component button from central panel. 

 Save algorithm as CHAIDPrune by clicking on Save algorithm button from 
top panel. 
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Figure 39 - Adding new sub-problem in existing algorithm 

Result from executed algorithm is shown on figure below. 
 

 
Figure 40 - Result of executed CHAID with prune algorithm on Iris dataset  
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Besides recreation and modification of existing algorithms WhiBo also enables: 
 

 Design of new algorithms, by combination of components that are derived 
from well-known algorithms (C4.5, CART, CHAID) or partial algorithm 
improvements (e.g. distance measure). 

 Incorporating partial improvements of algorithms that can be found in 
literature, but are not incorporated in any specific algorithm (e.g. Distance 
evaluation measure).  

 Incorporating a new sub-problem in an algorithm (e.g. Remove insignificant 
attributes) 

 Multiple component selection for sub-problem - it is possible to define 
more Splitting components stopping criteria. 
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Generic decision tree evolutionary search design and 
application 

WhiBo evolutionary search GDT is implemented as RapidMiner operator chain. 
WhiBo evolutionary search decision tree operators require ExampleSet as input 
and produce TreeModel, ExampleSet and Performance on output.   
 
For these examples we use “Weighting” dataset from RapidMiner’s sample data 
repository. 
 

 
Figure 41 - Main process for WhiBo evolutionary search decision tree 

Main process should contain at least three operators. Those are dataset (in this 
case Weighting dataset), Set Macro and WhiBo GDT Evolutionary Search. Since 
WhiBo GDT Evolutionary Search is operator chain it contains subprocess. Inside of 
this subprocess Generic decision tree should be placed. 
 
After loading dataset Macro must be provided. Macro points to WhiBo algorithm 
file which is needed to GDT Evolutionary Search operator. 
 

 
Figure 42 - Parameters panel of Set Macro operator 

 
 



 

40 
 

GDT Evolutionary Search operator is set after this. Previously defined Macro is set 
in wba file path macro name parameter text box. Also, log file path is defined. In 
that file results will be stored. Setup for algorithm search space and parameters of 
genetic algorithms are below. 
 

 
Figure 43 - Parameters panel of GDT Evolutionary Search operator 

Algorithm search space must be specified.  
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First, define Create split sub-problem space: 
 

 Click on Create split sub-problem on the left panel. 

 Select all components from central panel (multiple components for one 
sub-problem are selected by holding CTRL key and clicking on components) 

 Set default lower and upper values for Merge_Alpha_Value and 
Split_Alpha_Value for SignificantCategoricalComponent. 

 Click on Save component button from central panel. 
 

 
Figure 44 - Definition of Create split components for algorithm search space 
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Second, define Evaluate split sub-problem: 
 

 Click on Evaluate split sub-problem on the left panel. 

 Select ChiSquare, DistanceMeasure and GainRatio component from central 
panel. 

 Click on save component button from central panel. 
 

 
Figure 45 - Definition of Evaluate split components for algorithm search space 
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Third, define Stop criteria sub-problem: 
 

 Click on Stop criteria sub-problem on the left panel. 

 Select TreeDepth component from central panel. 

 Set Tree_Depth parameter from 1 to 10.  

 Click on save component button from central panel. 
 

 
Figure 46 - Definition of Stop criteria components for algorithm search space 
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Fourth, define Prune tree sub-problem: 
 

 Click on Prune tree sub-problem on the left panel. 

 Select PessimisticError component from central panel. 

 Set Confidence_Level parameter from 0 to 0.5.  

 Click on save component button from central panel. 
 

 
Figure 47 - Definition of Prune tree components for algorithm search space 
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Next step in configuring GDT Evolutionary Search operator is parameter settings 
of genetic algorithm by clicking Edit List button next to parameters in Parameters 
panel: 

 Set MAX_ALLOWED_POPULATION to 10. 

 Set POPULATION_SIZE to 5 

 Set mutateParameters to true. 

 Click on Apply button. 
 

 
Figure 48 - Definition of parameters for genetic algorithm 
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Inside GDT Evolutionary Search operator is cross validation operator, and inside 
cross validation there is GDT operator in Training section, while Apply Model and 
Performance operators are in Testing section. GDT should have valid .wba file, 
with defined Create split and Evaluate split components. 

 

 
Figure 49 - GDT Evolutionary Search subprocess 

Result from executed algorithm is shown on figures below. 
 

 
Figure 50 - Result of executed GDT Evolutionary Search example 
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Figure 51 - Performance of executed GDT Evolutionary Search example 

 
 
 

 
Figure 52 - Log file of executed GDT Evolutionary Search example 

Modifying algorithm search space 

Modifying of existing algorithm search space is done the same way as creating of 
new algorithms, by clicking Design algorithm button. In this example we will show 
how to  

 modify parameter of already defined component,  

 change component of defined sub-problem, 

 adding new sub-problem and component for its solution. 
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Modifying parameters 

In this example we will modify Merge_Alpha_Value parameters of Create split – 
SignificantCategorical component: 
 

 Click on Create split sub-problem on the left panel. 

 Set Merge_Alpha_Value from 0.1 to 0.4. 

 Click on save component button from central panel. 

 Save algorithm search space. 
 

 
Figure 53 - Modifying parameters of Merge_Alpha_Value 
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Replacing components for sub-problem 

Replacing components for sub-problem is done in following way: 
 

 Click on Evaluate split sub-problem on the left panel. 

 Add InformationGain component (using CTRL button) from central panel. 

 Remove GainRatio component (using CTRL button). 

 Click on save component button from central panel. 

 Save algorithm search space. 
 

 
Figure 54 - Replacing components in GDT Evolutionary Search 

 

 

 

Adding new sub-problem and component to an existing algorithm 
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Besides changing of parameters and components existing algorithm search space 
could be extended with new sub-problems and components. We will explain this 
extension by adding Remove insignificant attributes sub-problem.  
 

 Select Remove insignificant attributes sub-problem from left panel. 

 Select FTestNumerical component from central panel. 

 Leave default paramaters setting. 

 Click on save component button from central panel. 

 Save algorithm search space. 
 

 
Figure 55 - Adding new subproblem in GDT Evolutionary Search 

 
 
 
 
After conducting experiment with this algorithm search space setup results shown 
on figures below were gathered. 
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Figure 56 - Performance of executed GDT Evolutionary Search example 

 

 

 
Figure 57 - Log file of executed GDT Evolutionary Search example  
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Extending WHIBO 

Input and output are well defined for every Sub-problem, and these sub-problems 
are implemented as abstract classes in WhiBo. Reusable components are concrete 
classes where the logic is implemented. Sub-problems define standardized input 
and output for every reusable component, extended from sub-problem.   
 
WhiBo is implemented as an extendable environment in the Java programming 
language that enables the implementation of new RCs and sub-problems. 
Extending the GDT can be done by: 
 

 Adding new RCs. 

 Adding new sub-problems in the existing GDT algorithm. 
 

The GDT algorithm is implemented independently of RCs. So extending the GDT 
algorithm with a new RC asks for no changes in the algorithm flow. On the other 
hand, when extending WhiBo with a new sub-problem changes are needed in the 
GDT algorithm. 
 
Adding a new RC is accomplished in two steps. The first step is to define a new 
class for the RC. For that class the user has to define parameters and implement 
the RC logic. The inputs and outputs of the RC are predefined by the sub-problem 
the RC belongs to. The necessary changes are shown in bold at Figure 55. The 
second step is to register the new RC for a sub-problem as shown in bold at Figure 
56. 

 
If these two steps are done correctly the user will see his own component in the 
central panel of WhiBo GUI (Figure 4), and can use the GDT with the new RC. 

 
Adding a new sub-problem is achieved in three steps. The first step is to create an 
interface for the sub-problem, and define inputs and outputs for the sub-problem 
as shown in bold at Figure 57. 
The second step is to register the new sub-problem to enable using it through GUI 
as shown in bold at Figure 58.  
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Finally, the user has to modify the existing GDT algorithm to utilize the newly 
defined sub-problem. WhiBo is not only intended for use with decision-tree 
algorithms, but can be extended to other component-based machine learning 
algorithms.  

 

package rs.fon.WhiBo.GDT.component.splitEvaluation; 
public class MySplitEvaluation  
    extends AbstractSplitEvaluation { 
  
@Parameter(defaultValue="0.05", minValue ="0", 
                      maxValue="1") 
      private Double Alpha_Value; 
  
 @Override 
     public double evaluate(SplittedExampleSet 
exampleSet)  
               {   
                        /*  
                           user implementation  
                           for candidate split evaluation 
                       */   
                   return splitEvaluation; 
                } 
}  

Figure 58 - Implementing a new RC 

 
public class SplitEvaluation implements Subproblem { 
                … 
       PrivateString[] availableImplementationClassNames 
= 
                { 
 GainRatio.class.getName(), 
 GiniIndex.class.getName(), 
 InformationGain.class.getName(), 
 DistanceMeasure.class.getName(), 
 ChiSquare_FTest.class.getName(), 
 MySplitEvaluation.class.getName(); 
 }  
}; 

Figure 59 - Registering the new RC for a sub-problem 
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package 
rs.fon.WhiBo.GDT.component.newSubproblem; 
public interface newSubproblem { 
     public output1 newSubproblemMethod1(inputs1); 
     public output2 newSubproblemMethod1(inputs2); 
} 

Figure 60 - Defining a new sub-problem 

 

WhiBo can be found at the following web page 
http://code.google.com/p/WhiBo/. Data mining and machine learning 
researchers are invited to join our efforts to exchange components of decision 
trees and other machine learning algorithms in an open way based on the 
proposed WhiBo platform, as to establish a standard for interchange of 
components among decision tree based classification algorithms, as well as other 
machine learning algorithms. 
 
 

Package  rs.fon.WhiBo.GDT.problem; 
…. 
public class GenericTreeProblemBuilder { 
 
      public Problem buildProcess() { 
            … 
            Subproblem s2 = new PossibleSplit(); 
            Subproblem s3 = new Split Evaluation(); 
            … 
            Subproblem s7 = new UserDefinedSubproblem(); 
            List”Subproblem” subproblems; 
            subproblems.add(s1); 
            subproblems.add(s2); 
            … 
            subproblems.add(s7); 
            Problem process = new GenericTreeProblem(); 
            process.setProcessSteps(steps); 
            return process; 
      } 
…. 
} 

Figure 61 - Registering the new sub-problem 

 

http://code.google.com/p/WhiBo/
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Developer guide 

In order to extend WhiBo there are several steps which needs to be done. 
 

1. Since WhiBo is written in Java programming language, first step is to 
download Eclipse (http://www.eclipse.org/downloads/). 

 
2. When Eclipse is downloaded subversion support needs to be installed. We 

recommend Subclipse, which can be found on 
http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA. 
Installation of Subclipse is done in several steps: 
 

1. Open Eclipse. 
2. Select the Help > Install New Software menu option. 

 

 
Figure 62 - Installation of Subclipse 

3. Click the Add button and set the Location field on 
http://subclipse.tigris.org/update_1.8.x, and set name for example 
Subclipse. Then click OK button. 

http://www.eclipse.org/downloads/
http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA
http://subclipse.tigris.org/update_1.8.x
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Figure 63 - Adding Subclipse repository 

4. Select Subclipse components and click Next. 

5. Select the I accept the terms of the license agreements radio button. 

6. Click the Finish button. 

7. Click Yes to restart Eclipse. 

Eclipse will now have SVN Repository Exploring panel. If Eclipse don’t show this 
panel at first it can be added by clicking Windows->Open Perspective->Other…, 
then selecting SVN Repository Exploring option and click OK. 
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3. Checkout of WhiBo project is done in several steps: 
 

1. Right Click a repository in the SVN Repositories panel, select New, 
then Repository location…. 

 

 
Figure 64 - Adding new repository location 

2. Insert https://whibo.googlecode.com/svn/trunk/ in URL text box. 
 

 
Figure 65 - Adding WhiBo repository location 

 

3. Click Finish button. 

https://whibo.googlecode.com/svn/trunk/
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4. Right click on WhiBo repository in SVN Repositories panel. 

5. Select the Checkout… option. 

 
Figure 66 – Checkout of WhiBo project (1) 

6. Select the Check out as a project in the workspace option and enter 
a project name. 

 

 
Figure 67 – Checkout of WhiBo project (2) 
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7. Select workspace where you wish to save project. 

 
Figure 68 - Selecting workspace location 

8. Click Finish button. 

9. WhiBo project will show up in Package Explorer panel. 

4. Similarly, RapidMiner project needs to be imported as project. URL for 

RapidMiner project is http://svn.code.sf.net/p/rapidminer/code. Currently, 

RapidMiner version is called Unuk. 

 
5. After importing RapidMiner project it needs to be referenced in WhiBo 

project. 

 
1. Right click on WhiBo project. 

http://svn.code.sf.net/p/rapidminer/code
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2. Click Properties. 

3. Select Java Build Path on left side and then Project tab on central 

panel. 

 

 
Figure 69 - Importing RapidMiner project into WhiBo project 

4. Click Add… button. 

5. Select proper RapidMiner version. 

6. Click OK button on Project Selection panel. 

7. Click OK button on Properties panel. 
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Figure 70 - Selecting RapidMiner version 

6. Open build.xml file of WhiBo project. 
 

7. Make sure that fifth line contains proper RapidMiner project (in this case it 
should be: 
<property name="rm.dir" location="../RapidMiner_Unuk" />) 
 
 

8. Right click on build.xml file and select Run as…->Ant Build. With this step 
WhiBo extension is building in RapidMiner project, so it can be used in that 
project. 

 
Figure 71 - Building WhiBo project 
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9. Right click on WhiBo project and select Run as…->Java Application. 
 

 
Figure 72 - Running WhiBo project 

10. Select RapidMinerGUI class.  
 

 
Figure 73 - Main class of WhiBo project 

11. RapidMiner will start and WhiBo can be used. 
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For any information about configuration and extending WhiBo project you can 
contact us on e-mails (which can be found on the website) or on forum (which is 
also on the website). 
 
 

 
  

http://whibo.fon.bg.ac.rs/joomla/index.php/whibo-project
http://whibo.fon.bg.ac.rs/joomla/index.php/forum
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Appendix A 

ID3  algorithm 

This algorithm is the first algorithm of Ross Quinlan (Quinlan, 1986). It can only 
work with categorical data. It uses information gain as a measure of split quality. 
This evaluation measure is biased towards choosing attributes with more 
categories. 
 (Quinlan 1993). 

CART  algorithm 

This algorithm is proposed by Breiman et al, 1984. It is a classification and 
regression tree which can work with both numerical and categorical data. We 
analyzed only the classification tree. 
 
CART uses for split evaluation three evaluation measures: Gini, Twoing and 
Ordered Twoing for ordered categorical data. We analyzed only the Gini 
evaluation measure which is the most frequently used measure. 
 
CART produces only binary splits for categorical, as well as numerical data. CART 
includes an algorithm for tree pruning, namely cost complexity pruning (CCP). The 
generated CART model has the option to classify cases with missing attribute 
values. This is achieved through surrogate splits, i.e. alternative split nodes that 
are generated during tree growth and should be used as an replacement when 
the original attribute value is missing. 

C4.5  algorithm 

The successor of ID3 algorithm (Quinlan, 1993) improves several aspects of the 
original tree. It can work with numerical and categorical data. It produces 
multiway splits for categorical data, and binary splits for numerical data. 
 
It uses a less-biased split evaluation measure, the gain ratio. It includes options to 
handle missing values (which we didn’t analyze), and three pruning algorithms 
(reduced-error pruning, pessimistic-error pruning and error-based pruning). 
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CHAID algorithm 

It was proposed by Kass, 1980. It uses the chi-square test to evaluate the quality 

of a split. It works only with categorical attributes. Instead of branching a node on 

all categories or binary, it tries to group similar categories in joint categories, 

merging statistically significant categories together. It produces branches based 

on these merged categories. 

Distance measure 

This split evaluation measure was proposed by (Mantaras, 1991). It is an unbiased 

multiway evaluation measure. It is an improvement of information gain and gain 

ratio (although gain ratio was proposed later). 

Appendix B 

Subproblem: Create split 

Component Name: Binary (Subproblem: Create split - numerical) 

1. Concept: 

Description: This component divides a numerical attribute in two parts, < and >= 

from a specific value. The split produced by this component are therefore binary. 

Input: Decision table. 

Output: Proposed split. 

2. Context: 

Application: It represents the easiest way to split numerical attributes. For now 

only this component is provided for splitting numerical attributes in both 

approaches. 

3. Content: This component can be found in decision tree CART (Breiman 1984) 

C4.5 (Quinlan 1993). 

Example: All records that have value of attribute Humidity <=77.5 will be allocated 

in left branch and others in right branch. 
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Component Name: Binary (Subproblem: Create split - categorical) 

1. Concept: 

Description: This component groups categories of a categorical attribute in two 

parts. All possible combinations of rearranging categories in two parts can be 

produced by this component. 

Input: Decision table. 

Output: Proposed split. 

2. Context: 

Application: It represents a computationally demanding way to split categorical 

attributes. This component, however, can influence producing more accurate 

splits. 

3. Content: This component can be found in decision tree CART (Breiman 1984). 

Example: All records that have value of attribute Outlook = “Overcast” will be 

allocated in left branch and others that have values Outlook = “Sunny, Rain” in 

right branch 
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Component Name: Multiway (Subproblem: Create split - categorical) 

1. Concept: 

Description: The component produces splits for categorical attributes that have as 

many leaves as there are categories in an attribute. 

Input: Decision table. 

Output: Proposed split. 

2. Context: 

Application: It represents a computationally effective way of splitting categorical 

attributes. This component can help discover more interpretable decision trees 

when there is a few categories in attribute, while maintaining the tree accurate. 

3. Content: This component can be found in decision tree C4.5 (Quinlan 1993). 

Example: All records that have will be allocated in separate branch for every 

category of attribute (for attribute Outlook there will be tree branches: overcast, 

rain and sunny ).  

 
 

 

Component Name: Significant (Subproblem: Create split - categorical) 

1. Concept:  

Description: Groups similar categories into mergers that can produce significant 

splits. 

Input: Decision table with categorical input attributes and categorical output 

attribute. 

 Optional: 

Parameter for merging: Specifies the significance level (alpha) 

merged categories have to have. The significance level of a merged 
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category must be greater than 0 and less than or equal to 1. To 

prevent any merging of categories, specify a value of 1. The default 

value is 0.05. 

Parameter for splitting: Specifies the significance level (alpha) for 

splitting merged categories. The value must be between 0 and 1. The 

default value is 0.05. Because merging is done hierarchically it can 

happen that some categories within a merged category are 

statistically significant with another category in a merged category, 

but haven’t been tested before for significance, because of the 

hierarchical procedure of merging. It is, therefore, the step of 

splitting that allows finding near-optimal grouped categories. 

Output: Merged categories within input attributes. 

2. Context: 

Application: Can be used when it is important to join similar categories into a 

merger categories. For categorial attributes with large number of categories this 

way of grouping categories can produce more interpretable results. 

3. Content:  

Uses a method for grouping categorical attributes categories into merged 

categories as described in (Kass 1980). 

Example: Attribute Odor has 9 categories, and the records are allocated in 3 

branches by the grouped categories: left branch contains records with a,l, central 

branch with n and right branch with p,f,c,y,s,m.   
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Subproblem: Evaluate split 

Component Name: Information Gain (Subproblem: Evaluate Split) 

1. Concept: 

Description: Evaluates the quality of a split with the Information gain measure. 

This measure is based on entropy calculation of an input attribute compared to 

the output attribute. It measures which input attribute describes the output 

attribute best, and thus reduces entropy. 

Input: Split candidate. 

Output: Best split. 

2. Context: 

Application: This measure is computationally demanding and is biased towards 

choosing attributes with more categories. However, on certain datasets it can 

produce most accurate results. 

3. Content: This split evaluation measure is used in the ID3 algorithm (Quinlan 

1986). 

 

Component Name: Gain ratio (Subproblem: Evaluate Split) 

1. Concept: 

Description: Evaluates the quality of a split with the Gain ratio measure. This 

measure is based on entropy calculation of an input attribute compared to the 

output attribute and takes into account the number of categories in an attribute. 

It measures which input attribute describes the output attribute best, and thus 

reduces entropy. 

Input: Split candidate. 

Output: Best split. 

2. Context: 

Application: This measure is computationally demanding and is less biased 

towards choosing attributes with more categories than Information Gain. 

However, on certain datasets it can produce most accurate results. 

3. Content: This split evaluation measure is used in the C4.5 algorithm (Quinlan 

1993). 
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Component Name: Gini ratio (Subproblem: Evaluate Split) 

1. Concept: 

Description: Evaluates the quality of a split with the Gini ratio measure. This 

measure is based on probability calculation of an input attribute compared to the 

output attribute. It measures which input attribute describes the output attribute 

best, and thus reduces impurity of a node. The purest node is chosen as the best 

split. 

Input: Split candidate. 

Output: Best split. 

2. Context: 

Application: This measure is not computationally demanding. On certain datasets 

it can produce most accurate results. 

3. Content: This split evaluation measure is used in the CART algorithm (Breiman 

1993). 

 

Component Name: Distance measure (Subproblem: Evaluate Split) 

1. Concept: 

Description: Evaluates the quality of a split with the Distance measure. This 

measure is an improvement of Information gain measure. 

Input: Split candidate. 

Output: Best split. 

2. Context: 

Application: This measure is computationally demanding and is unbiased towards 

choosing attributes with more categories. It produces, in general, very accurate 

results. 

3. Content: This split evaluation measure is proposed in (Mantaras 1991) to 

improve the Information gain measure. 

 

Component Name: Chi-square test (Subproblem: Evaluate Split) 

1. Concept: 

Description: Evaluates the quality of a split with the chi-square test. It checks 

whether the proposed split is statistically significant. 

Input: Split candidate. 
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Output: Best split. 

2. Context: 

Application: This measure is biased towards choosing attributes with more 

categories. It can produce, on some datasets, most accurate results. 

3. Content: This split evaluation measure is used in the CHAID algorithm (Kass 

1980). 

Subproblem: Stop criteria 

Component Name: Maximum tree depth (Subproblem: Stop criteria) 

1. Concept: 

Description: Stops growth of decision tree when the maximum tree depth has 

been reached. 

Input: Decision tree in progress, maximum tree depth. 

Output: Built decision tree. 

2. Context: 

Application: This criteria should used when it is important to build trees that 

shouldn’t have more than a specified depth. In some cases, this can prevent 

overfitting. 

3. Content: This stopping criterion is used in almost all decision tree classifiers. 

 

Component Name: Minimum node size (Subproblem: Stop criteria) 

1. Concept: 

Description: Stops growth of decision tree on branches when there are not 

enough cases for a node. 

Input: Decision tree in progress, minimum node size. 

Output: Built decision tree. 

2. Context: 

Application: This criteria should used when it is important to build trees that 

should have nodes with a minimum number of cases. In some cases, this can 

prevent overfitting. 

3. Content: This stop criterion can be used in all decision tree classifiers. 
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Subproblem: Prune tree 

Component Name: Pessimistic error pruning (PEP) (Subproblem: Prune tree) 
1. Concept: 

Description: This method uses a pessimistic criterion to decide which subtree to 

replace with a node. 

Input: Decision tree. Confidence (0, 0.5] If this value is closer to 0.5 more sever 

pruning is performed. 

Output: Pruned decision tree. 

2. Context: 

Application: Can be used to reduce the tree in order to get more accurate or more 

understandable trees. 

3. Content: This method is proposed in (Quinlan 1993). 

 

Component Name: Minimum leaf size (Subproblem: Stop criteria) 

1. Concept: 

Description: Stops growth of decision tree on branches when there are not 

enough cases for a leaf. 

Input: Decision tree in progress, minimum leaf size. 

Output: Built decision tree. 

2. Context: 

Application: This criteria should used when it is important to build trees that 

should have leaves with a minimum number of cases. In some cases, this can 

prevent overfitting. 

3. Content: This pruning criterion can be used in all decision tree classifiers. 
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