University of Belgrade
Faculty of Organizational Sciences
Center for Business Decision Making

WHIBO Complete user guide

Belgrade, November 2013

Contents

] dgeTo 81 o] o HORRR PP 1
Black-boX @pProachooueeeeee e 1
WHhite-BOX @PPrOaCh ... ceeeiiee e e e e e e e e e e e e e s 2
WhiBo component repository and Generic decision tree (GDT) algorithm 2
Sub-problems and solutions (reusable components)cccceevveviriiiiiiiiiieneeeeeeeeene, 3
Generic decision tree (GDT) STtrUCLUIE.......ueeiiiiiiiee e 4
INStAll@tion GUIE ... e e e e e e 5
WHIBO @NVIFONMENT.. ..ot e e e e e e e e e e eeennes 8
WHIBO generic decision tree (GDT) operator GUI manual............ccoevvvvvvieennn..n. 9
WHIBO generic decision tree (GDT) evolutionary search operator GUI manual 10
WHIBO testing environment manualcoooviiiiieiiieeeeeecceee e, 14
ApPPlication EXaMPIES......oovviiiceeee e e e e e e eaaans 16
White-box component based design and application.........ccccceeeeeeeeierreiviinnnnnn. 17
Recreation of well-known algorithms with component based approach.......... 18
(071N 2 I F=Jo Y 1] .o U URRRUN 18
(@7 Y- 1 F=Jo T 51] .o SRR 22

(01 VN 1D 21 Fdo] 11 Y2 o PSSP 27
Modifying generic decision tree algorithms..........coueeeiiiiiiiiiiiiiieeeee, 32
MoOdifying PAramMELErS ...ccoeiiiiiieee e 34
Replacing components for sub-problem ..., 35
Adding new sub-problem and component to an existing algorithm 36
Generic decision tree evolutionary search design and application 39
Modifying algorithm search SpPace........coouuiiciiiiiiiiiic e, 47
MoOdifying PAraMELErS ...ccoeiiiiiciee e 48
Replacing components for sub-problem ..., 49

Adding new sub-problem and component to an existing algorithm 49

EXEENAING WHIBO ... e e e e e e e e e e e e e e e e e eaaa s 52

DTNV oY o Y=Y g (U | T [T 55
FAY o o T=T g Vo [t A 64
1R =1 VLo T 1 [o o RN 64
(O7AN 2 =1 F o] 1 o1 o TP 64
@7 R 1o o 1 i oY o o P 64

(@1 VN 1D 21 1o] 1 oY o o TSP 65
DiSTANCE MEASUIE ...t e e e e e e e e 65
7AYo 01T aTo LD > F U UURRPN 65
Subproblem: Create SPlit.......cooeeviiiiiiee s 65
Subproblem: Evaluate split........couuuiiiieiiiiiccee s 69
Subproblem: StOp Criteria......coovvviiiiiiee e 71
Y0 o] o1 o] o1 (=T g T o AU T (=10 f YU 72

R B O O S ettt ettt e e e e et e e e e e e e e e e a e e ataaaraaaaaas 73

Introduction

WhiBo is a RapidMiner (Mierswa et al. 2006) plug-in for “white-box” component
based design of decision tree algorithms for classification and evaluation of these
algorithms and their parts. It is intended to be used by typical end users, research
scientists and algorithm developers. The main idea of WhiBo is to offer
standardized components for algorithm design which will enable simple design
and performance testing, easy extension of the component repository and
creation of new generic algorithms. Currently, WhiBo provides one generic
algorithm, a graphical interface and a component repository for design of decision
trees for classification. A framework for performance testing is implemented in
WhiBo as well. WhBo plug-in and source code, is available from
www.whibo.fon.rs. Source code is documented thoroughly and accessible from
the web site through the APl documentation. The web site also provides
installation guide and number of tutorials for end users, algorithm developers,
and research scientists.

Black-box approach

Data mining algorithms are usually implemented in a “black-box” manner. This
means that the user defines input data and parameters (if needed) for the
algorithm, and the algorithm produces a model. The user has no other
possibilities to modify the algorithm to better adjust to data. The “black-box”
approach is satisfying for most users. On the other hand, implementation of
algorithms as a “black-box” makes it more difficult for algorithm designers who
want to use parts of the existing algorithm to create new algorithms. The
structure of black box algorithms demands reimplementation of algorithms and
their parts from the scratch. “Black-box” implemented algorithms are harder to
evaluate and analyze, because it is not clear which part of the algorithm has
influence on overall algorithm performance.

http://www.whibo.fon.rs/

White-Box approach

The “white-box” approach allows the user to define parameters, and inputs (as in
black-box algorithms) of an algorithm, but also the building blocks (i.e.
components) of the algorithm. These components are solutions for typical sub-
problems consistently encountered in the process of constructing the appropriate
model for the data at hand. This way, algorithmic solution becomes more data
and user driven, since it enables the users to intelligently select components of
the algorithm which best address the problems of the specific data. Moreover,
good ideas from algorithms are saved within components, so they can be used in
other algorithms.

White-box approach offers several advances in comparison with black box
algorithms (Sonnenburg et al, 2007).

e Combining advantages of various algorithms,

e Comparing algorithms in more details,

e Building on existing resources with less re-implementation,
e Easier “bug” detection on the level of components,

e Collaborative emergence of standards.

WhiBo component repository and Generic decision tree
(GDT) algorithm

WhiBo includes a reusable component repository for design of decision tree
algorithms. These components were extracted from “black-box” algorithms:

ID3 (Quinlan JR, 1986),

C4.5 (Quinlan JR, 1993),

CART (Breiman et al, 1984),

CHAID (Kass GV, 1980)

and improvements (distance measure identified in (Mantaras, 1991). Description
of analyzed algorithms and partial improvements could be found in Appendix A.

Sub-problems and solutions (reusable components)

In WhiBo algorithms are built by choosing building blocks (i.e. reusable
components - RCs) for each sub-problem. The problem of building decision tree
model is divided into sub-problems that are generalized algorithm structures with
the same input and output structure identified in all analyzed algorithms. Every
sub-problem with defined inputs and outputs can be solved in many ways, i.e.
with various a reusable components (RCs). That means that every RC solves a
specific sub-problem which has the same /0.

Table 1 shows identified sub-problems and components with their corresponding

I/O that are currently implemented in WhiBo.

DISTANCE MEASURE

Sub-problem Reusable component Input Output
Remove F TEST (numerical
insignificant attributes) Dataset in Dataset in current
g_ CHI SQUARE TEST current node node (reduced)
attributes . .
(categorical attributes)
Create s.pllt BINARY
(Numerical) Dataset i
Creat it BINARY curareis:ceno”;e A split candidate
(Categorica MULTIWAY
& SIGNIFICANT
CHI SQUARE
INFORMATION GAIN A split The best split i
Evaluate split GAIN RATIO >p'l © best spitin
GINI candidate current node

Stop criteria

MAXIMAL TREE DEPTH

MINIMAL NODE SIZE

Current tree
model

Signal for stopping
tree growth in
current node

Prune tree

PESSIMISTIC ERROR
PRUNING (PEP)

MIN LEAF SIZE (MLS)

Current tree
model

Pruned tree model

Table 1 - Sub-problems, reusable components with standardized 1/O for Generic decision tree

Sub-problems and reusable components implemented in Whibo are described

algorithm

according to Tracz (1990) in Appendix B.

Generic decision tree (GDT) structure

The GDT structure proposed in WhiBo is shown on Figure 1. For sub-problems
that are bolded it is necessary to define a sub-problem, while for other sub-
problems RCs are optional to use. “Create split” (numerical, and categorical) and
“Evaluate split” RCs are necessary for decision tree growth. Besides that, there
are no restrictions for combinations of RCs.

For every node,
Remove insignificant
attributes
Create split Create split
(Numerical) (Categorical)

Evaluate split

Stop criteria

Prune tree

Figure 1 - Generic decision tree (GDT) algorithm

The proposed GDT structure and component repository enables:

Reconstruction of the original algorithms in the parts that were analyzed.
Creation of hybrid algorithms with components.

Extension of the component repository by analyzing new algorithms or
partial improvements which can be incorporated in sub-problems with the
same input-output structure.

Definition of new sub-problems which can be incorporated in GDT
structure.

Installation guide

There are two ways of plug-in installation. First way is over RapidMiner
marketplace, and is done in following steps:

1. Open RapidMiner.

2. Press Help->Updates and Extensions (Marketplace).
3. Enter WhiBo as search term.

4. Click Search button.

5. Select WhiBo extension for installation (or update).
6. Press Install x packages button.

.
&% RapidMiner Marketplace g]

Select components to install and update below. In the preferences, you can select whether extensions are installed globally
(default) arin the users home directory. Updates to RapidMiner will always be installed globally. Any global update requires
N administrator privileges, both during the update and the subsequent restart.

ﬁgearch & Updates QTGDQOWHIOEGS 5 Top Rated mEurchased 7ﬂookmarks

X . £
[Whlbﬂ][Search l WhiBo
» [WhiBo 1.0.1 o
wime | Whibo extension implements framework for Version 1.0

2 manual and automatic (evolutionary) design Release date 11.11.2013.

of component based (white-box) decision File size 3.6 MB

tree algorithms. License AGPL

@Mar{ec for update o . .)

WhiBo is a framework for design and evaluation of “white-box” component-

based decision tree algorithms and their parts. Itis intended for use by
data mining practitioners, researchers and algorithm developers, but also
for teaching of decision tree algorithms. The main idea of WhiBuo is to offer
standardized decision tree algorithm components which enable simple
design and performance testing of decision tree algorithms, and easy
extension of the component repository. Currently, WhiBo provides a
generic decision tree algorithm, a graphical interface for manual and
automatic (evolutionary-based) design and a decision tree component
repasitory. A framewaork for performance testing of the generic decision
tree algorithms is implemented in WhiBo as well.

Documentation on the source code is accessible via the WhiBo web site
(www.whibo fon.bg.acrs) as APl documentation. The web site also
provides installation quide and number of tutorials for end users,

algorithm developers, and research scientists. &2
[ﬁs;lectforupdate l Goto exension homepaage
You are not logged in. (Login or register) [« Install 1 packages] [x Close]

Figure 2 — RapidMiner Marketplace

7. Read and accept the terms of license.
8. Press Install x packages button.

Please read and accept all terms of licenses to proceed with the installation.

Selected for installation License for WhiBo

ir"_i WhiBo 1.0.1
. GNU Affero General Public License - GNU Project -
WhiBa

-_J License Type: AGPL Free Software Foundation (FSF)

GNU AFFERO GENERAL PUBLIC LICENSE

Version 3, 19 November 2007

Copyright © 2007 Free Software Foundation, Inc.
<http.//fsf.orgl=

Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not
Dependencies allowed.

Preamble

The GNU Affero General Public License is a free,
copyleft license for sofiware and other kinds of works,
specifically designed to ensure cooperation with the
community in the case of network server software.

The licenses for most software and other practical
works are designed to take away your freedom to share
and change the works. By contrast, our General Public

Figure 3 — Confirm license dialog

RapidMiner will install plugin and restart in order to apply changes.

Second way: When RapidMiner is downloaded, installation of WhiBo can be
completed in two simple steps.

1. Download WhiBo.jar archive from download section of WhiBo page
http://www.whibo.fon.rs.

2. Place WhiBo.jar file in Rapid Miner’s plugin-folder :
...Program Files\Rapid-I\RapidMiner\lib\plugins

@ ’ | . » Raunar » Data(D:) » RapidMiner5 » lib » plugins » - PretraZi plugins
Organizuj v Uwrsti u biblioteku - Podelisa = Marezi Mova fascikla == « [l .@.
‘¢ Omiljene lokacije Ime : Daturmn izmene Tip Velicina
& Preuzimanja . managed 5/8/2013 9:09 AM Fascikla datoteke
Bl Radna povriina || rapidminer-WhiBo-1.0.000 10/30/2013 8:38 PM Executable Jar File 3723 kB

= Medavne posete

4 Biblicteke
3 Deokumenti
J’. Muzika
| Slike
B8 Videc zapisi

-013- Maticna grupa
M Racunar
&, WINDOWS (C)

a Data (D)

&i Mreza

2 stavki

Figure 4 - Placing WhiBo plug-in

If both steps were done correctly user can start the script by double clicking, and
RapidMiner with WhiBo environment will start.

http://www.whibo.fon.rs/

WHIBO environment

WhiBo environment currently implements two operator groups:

e Trees — contains Generic decision tree operator and WhiBoGDT Evolutionary
Search operator.

e Validation — contains Custom cross validation with log and Significance 5X2
cross validation F-test operators.

(2] Meta Mining (1)
=
=) Gdt Operators (2)
'y Generic decision tree
‘4’ WhiBo GDT Evolutionary Search
& 15 Validation (2)
%, x-validation with log
%, sx2 ¥-validation F-test s

Figure 5 - WhiBo operator group

E

WHIBO generic decision tree (GDT) operator GUI manual
WhiBo generic decision tree user interface contains four panels:

Left panel contains an array of buttons. Every button represents a concrete sub-
problem for a decision-tree algorithm design.

Central panel contains:
e Available RCs of selected sub-problem from the left panel.
e Available parameters (if available) for selected RCs.
e Buttons for including or disabling a RC from the current decision tree
structure.

Right panel shows current state of user designed algorithm (saved sub-problems,
RCs and parameters).

Top panel contains options for creating new, saving current or opening existing
generic decision tree algorithm.

| Generic decision u
[Mew Algarithm H Save Algorithm H Open Algarithm]
= P
o . - = Generic Decision Tree
Remove insignificant atributes Component Name Remove insignificant atributes | Remove insignificant atributes
= -
Component Description Remove insignificant atributes sy C_r_eat_e spiit)
-| BinaryNumerical
) Select Components | MultiwayCategorical
Create split ChiSquareTestCategorical B) Evaluate split
FTestNumerical _ =] InformationGain
| Stop criteria
Evaluate split | Prune ree
Stop criteria
Farameters
Prune tree ChiSquareTestCategaorical
Alpha_Value [00s]

{Type: Double, Min:0.0, Max:0.5, Defauit:0.05)

Use_Percentage_Instead [0]

(Type: int, Min:0, Masx:1, Defauit:0)

Percentage_Remove [0.4]
(Type: Double, Min:0.0, Max1.0, Defauit:0.4)

Figure 6 - WhiBo GDT user interface for design of decision tree algorithms

9

General procedure for designing new algorithms:

e Select sub-problem from left panel. When sub-problem is selected, possible
solutions (RCs) are shown in central panel.

e Select RC (or components if multiple) for sub-problem from central panel. If
parameters for component(s) are available, they will be shown in bottom
part of central panel with their default values.

e C(lick on save component button. Components and defined parameters for
selected sub-problem will be shown in the right panel as part of current
GDT algorithm.

e This procedure should be repeated for every sub-problem (Create split and
Evaluate split sub-problem are basic for decision tree growth and they must
be defined. Definition of other sub-problems is optional). When all sub-
problems, components and parameters are defined algorithm should be
saved on file system (click on save button from upper panel). By default
algorithms are saved with .wba (white box algorithm) extension.

WHIBO generic decision tree (GDT) evolutionary search
operator GUI manual

WHIBO generic decision tree (GDT) evolutionary search operator implements
genetic algorithm which selects reusable components defined in .ass (algorithm
search space) file.

Parameters:
e Algorithm search space file location — location of .ass file
e Parameters — list of parameters of genetic algorithm
e Whba file path macro name — macro pointing to .wba file
e Log file path — path where log file will be saved

10

=1
= Parameters

S PR RB~
¢, WhiBo GDT Evolutionary Search

|) S J_esion space |

evolutionary parameters [E}} Edit List (10)...

whba file path macro name [wbaFiIeF‘ath

log file path [DZ".lUgE.-"-"..I:S".-' ” @ l

Figure 7 - Parameters panel for WhiBo GDT Evolutionary Search

Similarly like in WhiBo generic decision tree user interface contains four panels:

Left panel contains an array of buttons. Every button represents a concrete sub-
problem for a decision-tree algorithm design.

Central panel contains:
e Available RCs of selected sub-problem from the left panel.
e Available parameters (if available) for selected RCs.
e Buttons for including or disabling a RC from the current decision tree
structure.

Right panel shows current state of user designed algorithm (saved sub-problems,
RCs and parameters).

Top panel contains options for creating new, saving current or opening existing
generic decision tree algorithm.

11

I
|;:| utionary genenc decision i l‘ﬂ

’ Mew Space] [Save Space l [Open Space l

- J Generic Decision Tree
Remove insignificant atributes Component Name || Remove insignificant atributes
- | Create split
Component Description | Evaluate spiit
Select Components | Stop criteria
Create split | Prune tree
Evaluate split
Stop criteria

Parameters
Prune tree

Figure 8 - WhiBo GDT evolutionary search user interface for design of algorithm search space

General procedure for designing algorithm search space:

e Select sub-problem from left panel. When sub-problem is selected, possible
solutions (RCs) are shown in central panel.

e Select RC (or components if multiple) for sub-problem from central panel. If
parameters for component(s) are available, they will be shown in bottom
part of central panel with lower and upper values selected. User can modify
these values.

e C(lick on save component button. Components and defined parameters for
selected sub-problem will be shown in the right panel as part of current
GDT algorithm.

e This procedure should be repeated for every sub-problem (Create split and
Evaluate split sub-problem are basic for decision tree growth and they must
be defined. Definition of other sub-problems is optional). When all sub-

12

problems, components and parameters are defined algorithm should be
saved on file system (click on save button from upper panel). By default
algorithms are saved with .ass (algorithm search space) extension.

After definition of algorithm search space parameters for genetic algorithm
should be defined.

Parameters:

e MAX_ ALLOWED EVOLUTIONS - maximal numbers of generations of
genetic algorithms (default value - 50).

e POPULATION_SIZE — number of units (decision trees) in one generation
(default value - 30).

e MUTATION_RATE — percentage of genes (components) will be changed
(default value - 6).

e CROSSOVER_RATE - rate of crossover of chromosomes in genetic algorithm
(default value — 0.35)

e SWITCH_FROM_SURROGATE_PERCENTAGE_EVOLUTIONS - defines how
many units should be removed from previous generation (default value —
0.4)

e SURROGATE_PERCENTAGE — defines how many units should be selected
from previous generation (default value — 0.4)

e mutateComponents — boolean value indicating weather reusable
components should be mutated (default value - true).

e mutateParameters — boolean value indicating weather parameters should
be mutated (default value - true).

e componentsMutationRate — mutation rate of components (default value -
1).

e parametersMutationRate — mutation rate of parameters (default value - 1).

13

FE

9 — Bl
|

Edit Parameter List: parameters
The parameters.

parameter name values
[I‘dA}(_ALLDWED_EVD LUTIONS] [5 0
\POPULATION_SIZE |[20
MUTATION_RATE |E
[CRDSSDVER_RATE][0.35

[SWITCH_FRDM_SURRDGATE_F'ERCENTAGE_EVDLUTIDN:] [0.4

|SURROGATE_PERCENTAGE J[o3
[mutateComponents Htrue
[mutateF’arameters Hfalse
|componenthiutationRate J[
parametershiutationRate |[1

[m.édd Entry l l Qﬁemove Entry l l @P«DD'F] l xgancel

Figure 9 - Parameters of genetic algorithm

WHIBO testing environment manual

WhiBo provides operators for testing performance and significance of differences
in algorithm performance.

Custom cross validation with log - implements cross validation with custom
defined number of folds and number of iterations and also enables writing results
in log in CSV format. The results are written in average, but also for every fold and
iteration. This operator writes accuracy of classifier, but also: Maximum tree
depth, weighted average tree depth, Total nodes, Total leaves, and Execution

time.

Parameters:

Average _performances _only — check if there is no need for logging the
results for every fold and iteration.

Algorithm_name — name of the algorithm.

Dataset_name — name of the dataset.

Number_of folds — number of folds for cross-validation.

Number_of repetitions — number of repetitions for cross-validation.

14

e Sampling_type — stratified sampling, linear sampling or shuffled sampling.
e log file details —file path for logging detailed results.
e log file _averages - file path for logging average results.

E;} Parameters

SRy B~
X-Validation with log

[] keep example set

average perfornmances only

algorithm name [GDT]
dataset name [Iris]
number of folds [2]
number of repetitions [5]
sampling type [stratiﬂed sampling v]
local random seed [‘l]
log file details [3sktop1.LngDetails.csv][&]
log file averages [ktop‘.LngAverages.csvH &]

[] paralielize training

[] paralielize testing

Figure 10 - Custom cross validation with log operator with parameters

Significance 5X2 cross validation F-test — This is the best significance tester for
classifiers according to (Salzberg, 1999). The 5x2 cross validation F-test (Alpaydin
E. (1999)) is testing significance of differences in algorithm performance.

Parameters:

e Alpha —significance parameter (Default value — 0.05).

e Local random seed — number used for initialization of pseudorandom
number generator.

e Sampling type — stratified sampling, linear sampling or shuffled
sampling.

15

E‘g Farameters

bR N N = = - R
bx2 X-Validation F-test

alpha [0.05]
local random seed [_1]
sampling type [stratiﬂed sampling v]

Figure 11 - Significance 5X2cv F-test operator with parameters

Application examples

WhiBo GDT is implemented as RapidMiner operator. WhiBo decision tree
operators require ExampleSet as input and produce TreeModel and ExampleSet
on output, so they are compatible with all Rapid miner’s evaluation and
visualization operators.

For these examples we use “Iris” dataset from UCI repository as a data source
(definition of data source can be done through RapidMiner’s sample data
repository).

£ overview +~ Process = L
@~ - & Firrocess » 2~ o @ H &~
Retrieve Iris
inp @ out res
5]
T Operators

| & Repositories
BEd-a 9 W e
2 () samples (none
B & data (ron=
(8 Golfinans - v1
(8 Golf-Testset (none - vt

[__ﬂ Labor-Megotiations (nene - v1

[5 Warket-Data jrone -1

| & Polynomial (nore vt

|3 Ripley-Set S

[2 Sonar none -«

| & Transactions

(8 weighting (mon= - w1
G processes (nene & Mo problems found

Bos Message Fixes Laocation
&F MewlocalRepository (vics

/1 Problems & Log

Figure 12 - Basic definition of RapidMiner process

16

On the lower left side of the screen local repository can be seen. From there,
"Iris” dataset was dragged to Main Process panel. With that step input
ExampleSet is defined.

White-box component based design and application

Using WhiBo GDT with RapidMiner will be explained on examples of creating well-
known algorithms, modifying these algorithms and designing new algorithms.

When ExampleSet is defined, add GDT operator to root process. GDT can be
found in WhiBo/GDT Operators operator group.

 Process =] L
@~ ~ I EiProcess » -0 EHIH S~
Retrieve Iris Generic decis...
inp [- out [g = mad [{{ res
o w Q exa) (| res
a8

Figure 13 - Adding GDT operator into stream

When the example source is defined and Generic Tree operator is added in
process, new generic decision tree can be designed, by clicking on Design new
algorithm button.

E‘glﬂarameters
- R B R

Generic decision tree

<L
]

| Design algarithm

Figure 14 - Parameters panel for GDT operator

17

Recreation of well-known algorithms with component based
approach

Application of white-box approach will be first explained on recreation of well-
known algorithms.

CART algorithm

First, define Create split sub-problem:
e Click on Create split sub-problem on the left panel.
e Select BinaryNumerical and BinaryCategorical components from central
panel (multiple components for one sub-problem are selected by holding
CTRL key and clicking on components).
e C(lick on save component button from central panel.

[Mew Algarithm l [Save Algarithm] [Open Algorithm

i‘:j Generic Decision Tree
Remove insignificant atributes CampETETiEme CEEatE=nlic | Remave insignificant atributes
-) B) Create split
Component Description Create split _— BinanyCategorical
~Select Components - | BinaryNumerical

Create split T | Evaluate split
BinaryNumerical Stop criteria
MultiwayCategorical | Prune tree

Evaluate split SignificantCategorical

Stop criteria

- Parameters
Prune tree BinaryCategorical

BinaryNumerical

Figure 15 - Definition of Create split sub-problem for CART algorithm

18

On the right panel defined components for a sub-problem is visualized through a

Tree view (Figure above).

Next step is definition of evaluate split sub-problem.
e Click on Evaluate split sub-problem.
e Select Gini index component.
e Click on save component button.

»| Generic decisicn

[MNew Algorithm l [Save Algorithm l [Open Algorithm l

Remove insignificant atributes Compenent Name Evaluate split

Component Description Evaluate split

Select Components
Create split ChiSquare
DistanceMeasure
GainRatio

Evaluate spit Gniindex

InformationGain

RandomEval
Stop criteria

Parameters
Prune trea Ginilndex

fj‘ Generic Decision Tree
| Remove insignificant atributes
5 Create split
| BinaryCategorical
| BinaryMumerical
&=) Evaluate split
— || Ginilndex
| Stop criteria
| Prune tree

Figure 16 - Definition of Evaluate split sub-problem for CART algorithm

Now, the basic components for CART algorithm are defined. Before saving the

algorithm we will define Stop criteria sub-problem:
e Click on Stop criteria sub-problem.
e Select Tree depth component
e Set Tree_Depth parameter on 5 (default value is 10).
e Click on save component button.

19

|

[Mew Algarithm] [Save Algorithm] [Open Algorithm]

fi,‘ Generic Decision Tree
Remove insignificant aributes | COMPonent Name Sispmiena [Remove insignificant atributes
L e B & Create split
Component Description Stop criteria : BinaryCategorical
_ r Select Components || BinaryMumerical
Create split LeafLabelConfidence =) Evaluate split
MinNodeSize -] Ginilndex
Time = &) Stop criteria
B) TreeDepth
Evaluate split TreeDepth = "ﬁ,‘ ‘Hee_Depth
- s
=] Prune tree
Stop criteria
- Parameters
Prune tree TreeDepth
Tree_Depth 5]

(Type: Integes, Min:1, Max:100, Defauh:10)

Figure 17 - Definition of Stop criteria sub-problem for CART algorithm

Finally Cart algorithm with tree depth stopping criteria is defined and can be
saved on file system.
Click on Save algorithm button from upper panel.

B Desktop & @ % ® 9 Q-
Bookmarks ' File Name Size Type Last Maodified
ﬁ — Last Directory . Big Data in Education File Folder Oct 26, 2013
l. ClBCB File Folder Apr19, 2013
| Data Mining with Weka File Folder 0Oct23, 2013
. Hortonworks Sandbox File Folder Feb 13,2013
1. Ivica Svasta File Folder Aug 28, 2012
|, OSDEA File Folder Aug 29, 2012
. Projects File Folder Oct22 2013
|, Red Hat Enterprice File Folder Oct 3, 2012
1. Rezultati File Folder Sep 28, 2013
1. SlAM File Folder Oct7,2013
oxmr 1
| woa file -]

o)[R

Figure 18 - Saving CART algorithm on file system

20

After saving algorithm it must be loaded in GDT GUI clicking on folder button in

parameters panel.

Parameters
SRR X B~

Generic decision tree

lJsers‘dﬂca&Deanp\DﬁRT.wba" fj' " Design algorithm l

Choose afile.

Figure 19 - Loading CART algorithm in GDT operator

When stream is executed, graphic a text tree model will be shown.

; Result Overview Q Tree (Generic decision free)

(@) Graph view () TextView () Annotations

Zoom

» » 2
> 0.800
Mode l,_k‘
ad
& -
= 1750 = 1750
- -
(@) =)
Node Labels e
> 4.800 = 4800 = 5.080

Edge Labels

)

=>2.100 =2.100 =>E050 =8.050

=0.800
S
= 5.050

[a1]

> 4560 = 4950
)

¥ 4 4
|Iris-versioolor |Iris—virginica |Iris-virginica |Iri=-versioc|lor

¥ 4
Iris-versicolor | | Iris-versicolor
L || S—

Figure 20 - Result of executed CART algorithm on Iris dataset

21

C4.5 algorithm

First, define Create split sub-problem:

e Click on Create split sub-problem on the left panel.

e Select BinaryNumerical and MultiwayCategorical components from central
panel (multiple components for one sub-problem are selected by holding
CTRL key and clicking on components)

e Click on save component button from central panel

|

[Mew Algarithm] [Save Algorithm] [Open Algorithm]

”E'j‘ Generic Decision Tree
Remove insignificant atributes | CoMPonent Name Emieer® |-] Remove insignificant atributes

=) Create split

Component Description Create split _‘_ BinaryNumerical
r Select Components B || MultiwayCategorical
Create split BinaryCategorical [*] Evaluate spiit
BinaryNumerical | Stop criteria
| Prune tree

MultiwayCategorical —
Evaluate split SignificantCategorical

Stop criteria

~ Parameters
Prune tree BinaryMumerical

MultiwayCategorical

Figure 21 - Definition of Create split sub-problem for C4.5 algorithm

22

Second, define Create split sub-problem:

e Click on Evaluate split sub-problem on the left panel.
e Select GainRatio component from central panel.
e Click on save component button from central panel.

[Mew Algorithm l [Save Algarithm l [Open Algorithm]

i‘:j‘ Generic Decision Tree

Remove insignificant atributes Companent Name Evaluate split || Remove insignificant atributes

&}) Create split

Component Description Evaluate split _r BinaryNumerical
) r Select Components || MultiwayCategorical
Create split ChiSquare =) 5 Evaluate split

DistanceMeasure - |- GainRatio
(5 Sto criteria
Evaluate split Ginilndex |-| Prune tree
InfarmationGain
RandomEval

Stop criteria

- Parameters
Prune tree GainRatio

Figure 22 - Definition of Evaluate split sub-problem for C4.5 algorithm

23

Third, define Stop criteria sub-problem:

e Click on Stop criteria sub-problem on the left panel.
e Select TreeDepth component from central panel.

e Set Tree_Depth parameter for example on 10.

e Click on save component button from central panel.

] Gerere secuion e

[Mew Algorithm] [Save Algorithm l [Open Algorithm l

i‘:,j‘ Generic Decision Tree
Remove insignificant atributes Component Name ArpEiss | Remove insignificant atributes

= Create split

Component Description Stop criteria _F BinaryNumerical

) rSelect Components | MultiwayCategorical
Create split LeafLabelConfidence =Y Evaluate split
MinNodeSize | GainRatio

Time B 5 Stop criteria

) Bl) TreeDepth
Evaluate split TreeDepth =& Tree_Depth
~ =] 10
| Prune tree

Stop criteria

~Parameters
Prune tree TreeDepth

Tree_Depth [10
(Type: Integer, Min:1, Max: 100, Default:10)

Figure 23 - Definition of Stop criteria sub-problem for C4.5 algorithm

24

Fourth, define Prune tree sub-problem:

e Click on Prune tree sub-problem on the left panel.

e Select PessimisticError component from central panel.
e Set Confidence Level parameter on 0.2.
e Click on save component button from central panel.

il
=,| Generic decision tree u

[Mew Algorithm l [Save Algorithm l [Open Algorithm l

- =T Generic Decision Tree
Remove insignificant atributes Component Name Prune tree | Remaove insignificant atributes
L E) Create split
Component Description Prune tree N .
~| BinaryMumerical
) Select Components | MultiwayCategorical
Create split CostComplesity B & Evaluate split
MinimalError ~| GainRatio
MinLeafSize B &) Stop criteria
) o B) TreeDepth
Evaluate spli B & Tree Depth
ReducedError 510
B "5 Prune tree
Stop criteria =) PessimisticError
= S Confidence_Level
o2
Parameters
Prune tree PessimisticError

0.2
{Type: Double, Min:0.0, Mas:0.5, Default:0.25)

Confidence_Level

Figure 24 - Definition of Prune tree sub-problem for C4.5 algorithm

Finally, C4.5 algorithm is defined and can be saved on file system. Click on Save
algorithm button from upper panel. When algorithm is defined, load it from file
system and execute stream.

@Parameters
SRR ® B~

Generic decision tree

|.Users\|vica\l]esktnp‘.m.ﬁ.wba|| b “ Design algorithm

Figure 25 - Loading C4.5 algorithm in GDT operator

25

When stream is executed, graphic a text tree model will be shown.

== Result Ovenview

) Tree (Generic decision free)

@ Graph View O Text View O Annotations

rZoom

£ p
rMode

B &

I

Tree
MNode Labels
Edge Labels

Save Image...

Help

[a]
2 o
J o ins-sstosa
2] I
wirs -
=1)
cas mam - .
—— @ == s
vive zave o seos
pa ®,
- _m L3 =)
s ism s om0

> 2280 2280

- =

=475 z4TH

=

> 1380 =135

[

Figure 26 - Result of executed C4.5 algorithm on Iris dataset

26

CHAID algorithm

First, define Create split sub-problem:

e Click on Create split sub-problem on the left panel.

e Select BinaryNumerical and SignificantCategorical components from central
panel (multiple components for one sub-problem are selected by holding
CTRL key and clicking on components)

o Set default parameters Merge Alpha Value and Split Alpha Value for
SignificantCategoricalComponent.

e Click on Save component button from central panel.

|

[Mew Algorithm] [Save Algorithm] [Open Algorithm

"Eﬂ Generic Decision Tree
Remove insignificant atributes Component Name et | Remove insignificant atributes
=) Create split
| BinaryMumerical
rSelect Components = ”Eﬂ SignificantCategorical
CreateiSpii BinaryCategorical &) Merge_Alpha_Value

) 0050
MultiwayCategorical SR @}?llg_oﬁj‘l;hﬂ_\falue
Evaluate split SignificantCategorical ;— Evaluate_split

| Stop criteria

| Prune tree

Component Description Create split

Stop criteria

~Parameters
Prune tree BinaryNumerical

SignificantCategorical

Merge_Alpha_Value [0.050

{Type: Double, Min:0, Max:1, Defaul:0.050)
Split_Alpha_value [0.040

(Type: Double, Min:0, Max:1, Defaul:0.045)

Figure 27 - Definition of Create split sub-problem for CHAID algorithm

27

Second, define Evaluate split sub-problem:

e Click on Evaluate split sub-problem on the left panel.
e Select ChiSquare component from central panel.
e Click on save component button from central panel.

"

[Mew Algorithm] [Save Algorithm] [Open Algorithm]

RES]‘ Generic Decision Tree
Remaove insignificant atributes Component Name Evaliatetsplc |1 Remove insignificant atributes
& Create split
|| BinaryNumerical
~Select Components = ”Ej‘ SignificantCategorical
& 5 Werge_Alpha_Valus

DistanceMeasure | 0.050

Component Description Evaluate split

GainRatio B9 ggn:)_o,m;;ha_value
Evaluate split Ginilndex &) Evaluate spit
InformationGain |~| chisquare
RandomEval ; Stop criteria
Stop criteria E] Prune tree
- Parameters
Prune tree ChiSquare

Figure 28 - Definition of Evaluate split sub-problem for CHAID algorithm

28

Third, define Stop criteria sub-problem:

e Click on Stop criteria sub-problem on the left panel.
e Select TreeDepth component from central panel.

e Set Tree_Depth parameter for example on 5.

e Click on save component button from central panel.

] Gerere secion e

[Mew Algorithm] [Save Algorithm l [Open Algorithm l

Remaove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Component Name

Component Description

Stop criteria

Stop criteria

-Select Components
LeafLabelConfidence
MinNodeSize

Time

TreeDepth

~Parameters
TreeDepth

Tree_Depth

[s

(Type: Integer, Min:1, Max: 100, Default:10)

ﬁ]‘ Qpneric Decision Tree
| Remove insignificant atributes
= Create split
| BinaryNumerical
B %) SignificantCateqgorical
= i Merge_Alpha_Value
] 0.050
= & Split_Alpha_Value
1 0.049
= 0 Evaluate split
| ChiSquare
= 5 Stop criteria
B) TreeDepth
= G Tree_Depth
_LRs
| Prune tree

Figure 29 - Definition of Stop criteria sub-problem for CHAID algorithm

29

Fourth, define Prune tree sub-problem:

e Click on Prune tree sub-problem on the left panel.

e Select PessimisticError component from central panel.
e Set Confidence _Level parameter for example on 0.2.

e Click on save component button from central panel.

— il

[Mew Algorithm] [Save Algorithm l [Open Algorithm l I

) Generic Decision Tree
Remove insignificant atributes Component Name amelee | Remove insignificant atributes
Component Description Prune tree = ﬂ C_r.eat.e slit .
-\ BinaryMumerical
Select Components B) SignificantCategorical
Create split CostComplexity = {j‘ Merge_Alpha_Value
MinimalError - 0.050
MinLeafSize = 5 Split_Alpha_value
; — | 0.049
S & & cuas o
-| ChiSguare
B 5 Stop criteria
Stop criteria E- CJ TreeDepth
=) Tree_Depth
| 5
Parameters B 5 Prune tree
Prune tree PessimisticErrar & & PessimisticError
= 5J Confidence_Level

Confidence_Level 0.z -1 0.2
{Type: Double, Min:0.0, Max:0.5, Default:0.25)

Figure 30 - Definition of Prune tree sub-problem for CHAID algorithm

Finally, CHAID algorithm is defined and can be saved on file system. Click on Save
algorithm button from upper panel. When algorithm is defined, load it from file
system and execute stream.

@Parameters
S22 58~

Generic decision tree

[sers‘.lvica‘nDesktop‘.CHAID.wba]l Design algorithm l

Figure 31 - Loading CHAID algorithm in GDT operator

When stream is executed, graphic a text tree model will be shown.
30

== Result Overview

@ Tree (Generic decision free)

(@) craph View () TextView () Annotations

rZoom

2P

rMode

B &

I

Tree
Node Labels
Edge Labels

Save Image...

Help

*0.800 20,800

=
»1.750 = 1750
o s
)
= 4800 = 4500 =5.050 = 5.050
e b = =
a =
I ! | E—
=>3.100 5.3100 >B_O.HJ = 8.050

¥ h| ¥ 4
|Iris—uers'xx)k)r |Iris—virgil|'l:a ‘Iris—virgini:a |Iris—vers'x:nlnr

Figure 32 - Result of executed CHAID algorithm on Iris dataset

31

Modifying generic decision tree algorithms

Algorithms created through WhiBo interface could be easily modified by
parameters, sub-problems or components. WhiBo algorithms are saved on a file
system by .wba (WhiBo algorithm) extension. Existing algorithms can be loaded
for editing by clicking on Open algorithm button from the top panel of WhiBo
interface.

[Mew Algarithm] [Save Algarithm]l’ Cpen Algorithm]

Figure 33 - Opening existing algorithm for modification

In this section it will be explained modifying of CHAID algorithm that was created
and saved in previous example.

= —
ié_oiOpen File l 28]

Bl Desktop [@ @ ;F " @ @ hd

| Bookmarks 1 File Name Size Type Last Modified
| ,Qr — Last Directory (. S0L Developer File Folder Feb 10,2012 =
L Umlet File Folder Aug 28, 2012
. WhiBoStari File Falder Oct 30,2013
'@ 99733 pdf 1MB Adobe AcrobatDoc.. Oct12, 2013
[# Adobe Dreamweaver CSB.Ink 1KB Preéica Oct4, 2013
'@Ealcor2013 Proceedings. pdf 21MB Adobe AcrobatDoc.. Oct9, 2013
|| C45wba 5KB WBA Datoteka Mov 2, 2013
|| CART.wba 4 KB WBA Datoteka Mov 2 2013
@ CCleaner.Ink 1KB Predica Aug 28, 2012
EKE WBA Datoteka Nov2,2013
@ Customize Fences.Ink 1KB Preica Aug 28, 2012
@ DAEMON Tools Lite.Ink 1KB Pretica Jun7, 2013
@ Eclipse.Ink 1KB Pretica Sep 28, 2013
@ Get Started With Oracle Database 11g Express... 2KB Pretica Feb 8,6 2013
3 cit Shellink 2KB Predica Oct 25, 2013
@ GitHub.appref-ms 1KB ClickOnce Applicati... Oct25 2013
@ Google Web Designer.ink 2KB Pretica Oct1, 2013
|CHAID.wba]
| Al Files -]

Figure 34 - Selecting existing algorithm from file system

When existing algorithm is opened, its sub-problems and RCs are shown in a tree
view on the right panel of WhiBo interface.

32

[Mew Algorithm] [Save Algorithm l [Open Algorithm l I

Remaove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Component Name

Component Description

Select Components

Parameters

Figure 35 - Loaded algorithm in GDT GUI

’EE Generic Decision Tree
| Remove insignificant atributes
B i Create split
| BinaryMNumerical
B) SignificantCategorical
= 5 Merge_Alpha_Value
| 0.050
=) Split_Alpha_Value
| 0.049
= 5 Evaluate split
| ChiSguare
B &) Stop criteria
B) TreeDepth
B) Tree_Depth
|5
= 75 Prune tree
B) PessimisticError
=) Confidence_Level
102

Modifying of existing algorithms is done the same way as creating of new

algorithms. In this example we will show how to

e modify parameter of already defined component,

e change component of defined sub-problem,

e adding new sub-problem and component for its solution.

33

Modifying parameters

In this example we will modify Merge_Alpha Value and Split_Alpha_Value
parameters of Create split — SignificantCategorical component and Tree Depth
parameter of Stop criteria - TreeDepth:

e Click on Create split sub-problem on the left panel.

e Set Merge Alpha_Value on 0.03.

e Set Split Alpha_Value on 0.02.

e Click on save component button from central panel.

e Click on StopCriteria sub-problem on the left panel.

e Set Tree_Depth parameter on 4.

e Save algorithm as CHAIDModifiedParameters by clicking on Save algorithm
button from top panel.

Result from executed algorithm is shown on figure below.

=7 Result Overview () Tree (Generic decision tree)

(@) Graph View () TextView () Annotations

Zoom .
(/@ ﬁ | a4 |
=0.800 = 0.800
Mode . -
|' ad | Iriz-zetosa
@)

=1.780 = 1.750

= -~
Iris-virginica —
= |a3 |

I

Tree

Mode Labels ,
= 5.050 = 5.050

Edge Labels i

Iris-virginica | | Iris-versicolor
Save Image... e

Help

Figure 36 - Loaded algorithm in GDT GUI

34

Replacing components for sub-problem

In this example we will replace Evaluation measure component in
CHAIDModifiedParameters algorithm that is created in previous subsection.

e Click on Evaluate split sub-problem on the left panel.

e Select DistanceMeasure component from central panel.

e Click on save component button from central panel.

e Save algorithm as CHAIDModifiedParametersDistance by clicking on Save
algorithm button from top panel.

)

»| Generic decisicn tree

[Mew Algorithm] [Save Algorithm] [Open Algorithm]

-) Generic Decision Tree
Remove insignificant atributes Component Name EvaliabeSpNE “| Remove insignificant atributes
Component Description Evaluate split & ’E)]‘C_reate selit
P P P - BinaryMumerical
) Select Components = ’\fj‘ SignificantCategorical
Create split ChiSquare = ’E),,"‘ Merge_Alpha_Value
] 003
GainRatio = 5 Split_Alpha_Value
) o -] 0.02
Evaluate split Ginilndex B) Evaluate split
InformationGain | DistancelMeasure
RandomEval B & Stop criteria
£
Stop criteria Bl = TreeDepth
= G Tree_Depth
- —. 4
Parameters ~| Prune tree
Prune tree DistanceMaasure

Figure 37 - Replacing components in CHAID algorithm in GDT GUI

Result from executed algorithm is shown on figure below.

35

27 Result Overview () Tree (Generic decision tree)

(@) Graph View () TextView () Annotations

Zoom

A p a

> 2.450 = 2.450

Mode I
ﬁ S

>1.750 = 1.750

Tree — ik &
| a’ | al |
Mode Labels :

Iris-zetosa

I

*4.800 = 4.800 > 50580 = 5080

Edge Labels [-4

Iris-virginica | | Iriz-virginica | [Irizs-virginica | | Iris-versicolor

Save Image... [

Help

Figure 38 - Result of modified CHAID algorithm

Adding new sub-problem and component to an existing algorithm

Besides changing of parameters and components existing algorithms could be
extended with new sub-problems and components. We will explain this extension
by adding Prune tree sub-problem to CHAID algorithm that is defined in previous
subsection.

e Load CHAID algorithm from file system by clicking on Open algorithm
button from top panel.

e Select Prune tree sub-problem from left panel.

e C(lick disable.

e Select MinLeafSize component from central panel.

o Set Size Of Leaf parameter to 15.

e Click on save component button from central panel.

e Save algorithm as CHAIDPrune by clicking on Save algorithm button from
top panel.

36

[Mew Algorithm l [Save Algorithm] [Open Algorithm

Remove insignificant atributes

Component Name Prune tree

Component Description Prune tree

Create split

rSelect Components
CostComplexity
MinimalError

Evaluate split

PessimisticError
ReducedError

Stop criteria

Prune tree

- Parameters
MinLeafSize

Size_Of_Leaf 15

({Type: Double, Min:1, M2x1000, Defaul:30)

t‘:j generic Decision Tree
|~| Remove insignificant atributes
=) Create split
|- BinaryNumerical
B & SignificantCategorical
Bl) Merge_Alpha_Value
[0.050
[5 Split_Alpha_value
[0.049
B) Evaluate split
: ChiSquare
=) Stop criteria
B &) TreeDepth
Bl i Tree_Depth
15
B 5 Prune tree
B G MinLeafSize
Bl & Size_Of_Leaf
| 15

Figure 39 - Adding new sub-problem in existing algorithm

Result from executed algorithm is shown on figure below.

E Result Overview Q Tree (Generic decision tree)

@ Graph View O Text View O Annotations

MNode Labels
Edge Labels

Save Image...

- Zoom o
2 £ a4
= 0.800 = 0.800
~Mode Iﬂl_\ —
(ris-setosa
B 4 =4
=>1.750 = 1750
¥ ~
Iris-virginica | | Iris-versicolor

Help

Figure 40 - Result of executed CHAID with prune algorithm on Iris dataset

37

Besides recreation and modification of existing algorithms WhiBo also enables:

Design of new algorithms, by combination of components that are derived
from well-known algorithms (C4.5, CART, CHAID) or partial algorithm
improvements (e.g. distance measure).

Incorporating partial improvements of algorithms that can be found in
literature, but are not incorporated in any specific algorithm (e.g. Distance
evaluation measure).

Incorporating a new sub-problem in an algorithm (e.g. Remove insignificant
attributes)

Multiple component selection for sub-problem - it is possible to define
more Splitting components stopping criteria.

38

Generic decision tree evolutionary search design and
application

WhiBo evolutionary search GDT is implemented as RapidMiner operator chain.
WhiBo evolutionary search decision tree operators require ExampleSet as input
and produce TreeModel, ExampleSet and Performance on output.

For these examples we use “Weighting” dataset from RapidMiner’s sample data
repository.

o Process = XML
é - l-* - ‘t 'ET Process » a? - @ @? @ L‘& -
Retrieve Iris Set Macro WhiBo GDT Ew...
inp [= out [y { thr . thrp gt mod [} { res
':' w thr :y thr f—\,l exa [: es
O 9 per [: res
o fa]

Figure 41 - Main process for WhiBo evolutionary search decision tree

Main process should contain at least three operators. Those are dataset (in this
case Weighting dataset), Set Macro and WhiBo GDT Evolutionary Search. Since
WhiBo GDT Evolutionary Search is operator chain it contains subprocess. Inside of
this subprocess Generic decision tree should be placed.

After loading dataset Macro must be provided. Macro points to WhiBo algorithm
file which is needed to GDT Evolutionary Search operator.

@Parameters
Sy B-~

) set Macro
macro [wbaFiIe l
value [icaﬁ.Desktnp*.‘.*.fhiElnGDT.wba]

Figure 42 - Parameters panel of Set Macro operator

39

GDT Evolutionary Search operator is set after this. Previously defined Macro is set
in wba file path macro name parameter text box. Also, log file path is defined. In
that file results will be stored. Setup for algorithm search space and parameters of
genetic algorithms are below.

|_‘_'?;g- Farameters

SRR B~
¢, WhiBo GDT Evolutionary Search

['utnrijahass ﬂIelSearchSpace.ass“) H Design Space

evolutionary parameters [[} Edit List (10)... l

whba file path macro name [%{wbaFile}

log file path [D:ﬁ.lngEA.csu ” = l

Figure 43 - Parameters panel of GDT Evolutionary Search operator

Algorithm search space must be specified.

40

First, define Create split sub-problem space:

e Click on Create split sub-problem on the left panel.

e Select all components from central panel (multiple components for one
sub-problem are selected by holding CTRL key and clicking on components)

lower and upper values for Merge Alpha Value and
Split_Alpha_Value for SignificantCategoricalComponent.

e Click on Save component button from central panel.

e Set default

[s = = ™
| £| Evolutionary generic decision u
e _—

[Mew Space] [Save Space] [Open Space]

Remaove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Component Mame

Component Description

Select Components

Parameters

EEJT' Generic Decision Tree
Evaluate split ‘| Remove insignificant atributes
= 0 Create split
| BinaryCategorical
| BinaryMumerical
| MultiwayCategorical
= 5 SignificantCategorical
= 3 Merge_Alpha_Value
10-1
=) Split_Alpha_Value
) 10-1
| Evaluate split
| Stop criteria
| Prune tree

Evaluate split

Figure 44 - Definition of Create split components for algorithm search space

41

Second, define Evaluate split sub-problem:

e Click on Evaluate split sub-problem on the left panel.

e Select ChiSquare, DistanceMeasure and GainRatio component from central
panel.

e Click on save component button from central panel.

I Evolutionary generic decision tre

[Mew Space] [Save Space] [Open Space]

t‘:j Generic Decision Tree
Remove insignificant atributes | COMPonent Name Evaluate split [] Remove insignificant atributes
L) B 5 Create split
Component Description Evaluate split — BinaryCategorical
) ~Select Components || BinaryNumerical
Create split ChiSquare |- MultiwayCategorical
e T - 2 SignificantCategorical
GainRatio = 5 Merge_Alpha_Value
) > Eo-1
Evaluate split G|n|lnde.x . & 5 Split_Alpha_Value
InfarmationGain ENR
RandomEval =] -,:Ei! Iéfaluate_split
Stop criteria |-/ ChiSquare
|| DistanceMeasure
-] GainRatio
- Parameters |- Stop criteria
Prune tree ChiSquare || Prune tree

DistanceMeasure

GainRatio

Figure 45 - Definition of Evaluate split components for algorithm search space

42

Third, define Stop criteria sub-problem:

e Click on Stop criteria sub-problem on the left panel.
e Select TreeDepth component from central panel.

e Set Tree_Depth parameter from 1 to 10.

e Click on save component button from central panel.

[Mew Space l [Save Space l [Open Space l

] Generic Decision Tree

Remove insignificant atributes Component Name ArpEiss | Remove insignificant atributes

= T Create split

Component Description Stop criteria _F Binary/Categorical
) rSelect Components _F BinaryMumerical
Create split LeafLabelConfidence | MultiwayCategorical
MinNodeSize & 5 SignificantCategorical
Time B & I‘\.l'l\elrge_‘IAlpha_Value
Evaluate split TreeDepth =R g_pnt_mpha_\.falue
1 0-1
= Evaluate split
Stop criteria | ChiSquare
| DistanceMeasure

| GainRatio
B "5 Stop criteria

~Parameters
Prune tree TreeDepth = "éﬂg?emg .
Tree_Dep
Tree_Depth 1 [} 10 2 Prune 1-10

(Type: Integer, Min:1, Max: 100, Defauit:10)

Figure 46 - Definition of Stop criteria components for algorithm search space

43

Fourth, define Prune tree sub-problem:

e Click on Prune tree sub-problem on the left panel.

e Select PessimisticError component from central panel.
e Set Confidence Level parameter from 0 to 0.5.

e Click on save component button from central panel.

I | Evelutionary generic decision tre

[Mew Space l [Save Space l [COpen Space l

”ﬁ,‘ Generic Decision Tree
Remove insignificant atributes Component Name Prune tree | Remove insignificant atributes

B i Create split

Component Description Prune tree

| BinaryCategorical
) ~Select Components | BinaryNumerical
Create split CostComplexity | MultiwayCategorical
MinLeafsize B) SignificantCategorical
MinimalError B) Merge_Alpha_Value
) — 1 0-1
Evaluate spii &) Spit_Alpha_Value
ReducedErrar E]
| 0-1
=) Evaluate split
Stop criteria | Chisguare
| DistanceMeasure

| GainRatio
B 5 Stop criteria

~Parameters
Prune tree T T B) TreeDepth
=) Tree_Depth
Confidence_Level 0 [} [I 05 =l 1-10
= &) Prune tree
{Type: Double, Min:0.0, Max:0.5, Default:0.25) = ,\ﬁ-ll‘ PessimisticError
=) Confidence_Level
1 0-05

Figure 47 - Definition of Prune tree components for algorithm search space

44

Next step in configuring GDT Evolutionary Search operator is parameter settings
of genetic algorithm by clicking Edit List button next to parameters in Parameters
panel:

e Set MAX_ALLOWED_POPULATION to 10.

e Set POPULATION_SIZEto 5

e Set mutateParameters to true.

e Click on Apply button.

Edit Parameter List: parameters
The parameters.

parameter name values
[MAX_ALLDWED_EVDLUTIDNS

[F‘DF’U LATION_SIZE

[MUT&TIDN_RATE

[CRDSSDVER_RATE

[SWITCH_FRDM_SURRDG.-‘\TE_F’ERCENTJ\G E_EVOLUTION !] [U 4

[SU RROGATE_PERCENTAGE ”0.3

[mutate Components ”true

[mutate Parameters ”true

[componentMutationRate ”1

[parametersMutatinnRate ”1

[Eﬂ,gdd Entry l l ﬂgemove Entry] | @ﬁpply I l x Cancel l |

Figure 48 - Definition of parameters for genetic algorithm

45

Inside GDT Evolutionary Search operator is cross validation operator, and inside
cross validation there is GDT operator in Training section, while Apply Model and
Performance operators are in Testing section. GDT should have valid .wba file,

with defined Create split and Evaluate split components.

Validation
tra) C tra mod :1 (per
q tra [] mod
% ave :1
oD
2] =
/
Decizion Tree Apply Model Performance
tra) (tra mod) mod mod) (mod lah) lab i per) (ave
Q 2xa :) tes) (unl mod :) per % 2xa :) I: ave
8] thr 8] (2]
Figure 49 - GDT Evolutionary Search subprocess
Result from executed algorithm is shown on figures below.
; Result Overview % Performanceyector (Performance) lj ExampleSet (Retrieve Weighting) Q Tree (Generic decision tree)
(@) Graph View () Text View (_) Annotations ==

Zoom

2 p

Mode

EH &

Node Labels

Edge Labels

Figure 50 - Result of executed GDT Evolutionary Search example

46

2 Result Overview % PerformanceVector (Performance) l} ExampleSet (Retrieve Weighting) Q Tree (Generic decision tree)

(@) Table / Plot View () TextView () Annatations =T}
Criterion Selectar (@) Multiclass Classification Performance () Annatations =T

(@) Table View () PlotView

accuracy: 89.80% +/- 4.85% (mikro: 89.80%)
true negative true positive class precision

pred. negative 212 25 809.45%

pred. positive 26 237 90.11%

class recall 89.08% 90.46%

Figure 51 - Performance of executed GDT Evolutionary Search example

21 Number of values returned from cache: 6
22 Number of evaluations of fitness function: 16
23 Execution time: 00:07
24 Cache cleared--------------
25 null BinaryCategorical ChiSguare TreeDepth(46) PessimisticError{0.08941713426889725) 0.92
26 null BinaryCategorical ChiSguare TreeDepth(77) PessimisticError{0.08941713426889725) 0.91
27 null BinaryCategorical DistanceMeasure TreeDepth(77) PessimisticError(0.08341713426889725) 0.892
28 [null BinaryCategorical GainRatio TreeDepth(77) PessimisticError(0.08941713426889723) 0.898
29 |null BinaryCategorical ChiSquare TreeDepth(77) PessimisticError(0.3948348474061291) 0.912
30 null BinaryCategorical ChiSquare TreeDepth(15) PessimisticError({0.3548348474061291) 0.894
31 null BinaryCategorical ChiSguare TreeDepth(78) PessimisticError(0.3548348474061291) 0.896
32 null BinaryCategorical ChiSguare TreeDepth(78) null 0.308
33 null BinaryCategorical ChiSgquare TreeDepth(17) PessimisticError{0.3548348474061291) 0.302
34 |null BinaryCategorical Chisquare null PessimisticError|0.3948348474061291) 0.902
35 The best solution fitness value: 0.92
36 Best Solution:
37 null BinaryCategorical ChiSguare TreeDepth(17) PessimisticError{0.3548348474061291)

38 Number of values returned from cache: 25
39 Number of evaluations of fitness function: 10

Figure 52 - Log file of executed GDT Evolutionary Search example

Modifying algorithm search space

Modifying of existing algorithm search space is done the same way as creating of
new algorithms, by clicking Design algorithm button. In this example we will show

how to

e modify parameter of already defined component,
e change component of defined sub-problem,
e adding new sub-problem and component for its solution.

47

Modifying parameters

In this example we will modify Merge_Alpha_Value parameters of Create split —
SignificantCategorical component:

e Click on Create split sub-problem on the left panel.
e Set Merge Alpha_Value from 0.1 to 0.4.

e Click on save component button from central panel.
e Save algorithm search space.

[Mew Space] [Save Space] [Open Space]

7.5.," Generic Decision Tree
Remave insignificant atributes Component Name Create split |1 Remove insignificant atributes
L) B) Create split
Component Description Create split : BinaryCategarical
rSelect Components _r BinaryNumerical
Create split BinaryCategorical || MultiwayCategorical
BinaryNumerical Bl i SignificantCategorical
MultiwayCategorical = Merge_Alpha_value
Evaluate split SignificantCategorical o @ S_:;Ii?_.llpi:_\falue
[E0-1
&) Evaluate split
Stop criteria =] ChiSquare
|| DistanceMeasure
|| GainRatio
-Parameters & 5 Stop criteria
Prune tree BinaryCategorical B) TreeDepth
& & Tree_Depth
11-10
BinaryMumerical =] ”ﬁ,‘ Prune tree

= 5 PessimisticError
& & Confidence_Level

MultiwayCategarical =] 0-05

SignificantCategorical

Merge_Alpha_Value 0.1 —] 04
(Type: Double, Min:0, Max:1, Defauit:0.050)
Split_Alpha_value 0 | 0 1

({Type: Double, Min:D, Max:1, Defauit:0.045)

Figure 53 - Modifying parameters of Merge_Alpha_Value

48

Replacing components for sub-problem

Replacing components for sub-problem is done in following way:

e Click on Evaluate split sub-problem on the left panel.

e Add InformationGain component (using CTRL button) from central panel.
e Remove GainRatio component (using CTRL button).

e Click on save component button from central panel.

e Save algorithm search space.

[Mew Space] [Save Space] [Open Space

fi‘ Generic Decision Tree
Remove insignificant atributes Companent Name Euaktabe Syl |1 Remave insignificant atributes
= & Create split
_r' BinaryCategorical
rSelect Components _ BinaryMumerical
Create split Chisquare |- MultiwayCategorical
TreE e e B O SignificantCategorical

GainRatio =) Werge_Alpha_Value

Component Description Evaluate split

Evaluate split Ginilnde . = TS' S_pli?_llpa.:_\.falue
F0-1
RandomEval =] -;S! Ié«'aluate_split
Stop criteria — ChiSquare
|| DistanceMeasure
|| InformationGain
- Parameters = & Stop criteria
Prune tree ChiSquare B & TreeDepth
= 5 Tree_Depth
11-10
=) Prune tree
B %) PessimisticError
= &) Confidence_Level
DistanceMeasure 1 0-05

InfarmationGain

Figure 54 - Replacing components in GDT Evolutionary Search

Adding new sub-problem and component to an existing algorithm

49

Besides changing of parameters and components existing algorithm search space
could be extended with new sub-problems and components. We will explain this
extension by adding Remove insignificant attributes sub-problem.

e Select Remove insignificant attributes sub-problem from left panel.

e Select FTestNumerical component from central panel.

e Leave default paramaters setting.
e Click on save component button from central panel.
e Save algorithm search space.

- —
| £:| Evolutionary generic decision u
—

[Mew Space] [Save Space] [Open Space]

Remaove insignificant atributes

Create split

Evaluate split

Stop criteria

Prune tree

Component Name

Component Description Remave insignificant atributes

Select Components

ChiSquareTestCategorical
FTestMumerical

Parameters
FTestMNumerical

Remove insignificant atributes

Alpha_Value 0 ”

(Type! Double, Min:0.0, Max:0.5, Defauit:0.05)
Use_Percentage_Instead 0 [}

(Type: int, Min:0, Max:1, Defauit:0)
Percentage_Remove 0 [}

(Type: Double, Min:0.0, Maxi1.0, Defavit.4)

”\':___.‘T‘ Generic Decision Tree
= ”\f__;‘ Remaove insignificant atributes
B &) FTestNumerical
B) Alpha_value
| 0-05
=) ’\S‘ Use_Percentage_Instead
| 0-1
=) f__,?‘ Percentage_Remove
| 0-1
& i) Create split
| BinaryCategorical
-| BinaryNumerical
| MultiwayCategorical
=) SignificantCateqgorical
=) Merge_Alpha_Value
|01-04
B) Split_Alpha_Value
| 0-1
& i) Evaluate split
| ChiSquare
| DistanceMeasure
| InformationGain
B) Stop criteria
= &) TreeDepth
= 5 Tree_Depth
1 1-10
Prune tree
i) PessimisticEror
& Confidence_Level
| 0-05

SR
=

Figure 55 - Adding new subproblem in GDT Evolutionary Search

After conducting experiment with this algorithm search space setup results shown
on figures below were gathered.

50

¥ Result Overview % Performancevectar (Performance) {i ExampleSet (Retrieve Weighting) Q Tree (Generic decision tree)

(@) Table / Plot View () Text View () Annatations =]
Criterion Selector @ Multiclass Classification Performance O Annotations =] @ -
accuracy

() Tanle view () Plotview

accuracy: 91.00% +/- 2.72% (mikro: 91.00%)

true negative true positive class precision
pred. negative 213 20 91.42%
pred. positive 25 247 90 64%
class recall 80.50% 92.37%

Figure 56 - Performance of executed GDT Evolutionary Search example

54 |Cache cleared----------—---

55 Number of values returned from cache: 13

56 |Number of evaluations of fitness function: 12
57 Execution time: 00:04

58 |Cache cleared--------------

59 FTestMumerical(0.9729494240097137) MultiwayCategorical DistanceMeasure null PessimisticError(0.43504839077645285) 0.898
60 FTestNumerical(0.5242083226527587) MultiwayCategorical DistanceMeasure null PessimisticError(0.291387730739167) 0.912
61 |FTestNumerical(0.27080173073754676) MultiwayCategorical DistanceMeasure null PessimisticError(0.291387730739167) 0.502
62 FTestNumerical(0.9053335432718563) MultiwayCategorical DistanceMeasure null PessimisticError(0.2137296357883106) 0.904
63 FTestNumerical(0.34203456281548106) MultiwayCategorical DistanceMeasure null PessimisticError(0.2137296357883106) 0.912
64 FTestNumerical(0.662099165297556) MultiwayCategorical DistanceMeasure null PessimisticError(0.2137296357883106) 0.898
65 |The best solution fitness value: 0.912

66 |Best Solution:

67 FTestNumerical(0.34203456281548106) MultiwayCategorical DistanceMeasure null PessimisticError(0.2137296357883106)

68 Number of values returned from cache: 26
69 |Number of evaluations of fitness function: 6

Figure 57 - Log file of executed GDT Evolutionary Search example

51

Extending WHIBO

Input and output are well defined for every Sub-problem, and these sub-problems
are implemented as abstract classes in WhiBo. Reusable components are concrete
classes where the logic is implemented. Sub-problems define standardized input
and output for every reusable component, extended from sub-problem.

WhiBo is implemented as an extendable environment in the Java programming
language that enables the implementation of new RCs and sub-problems.
Extending the GDT can be done by:

— Adding new RCs.
— Adding new sub-problems in the existing GDT algorithm.

The GDT algorithm is implemented independently of RCs. So extending the GDT
algorithm with a new RC asks for no changes in the algorithm flow. On the other
hand, when extending WhiBo with a new sub-problem changes are needed in the
GDT algorithm.

Adding a new RC is accomplished in two steps. The first step is to define a new
class for the RC. For that class the user has to define parameters and implement
the RC logic. The inputs and outputs of the RC are predefined by the sub-problem
the RC belongs to. The necessary changes are shown in bold at Figure 55. The
second step is to register the new RC for a sub-problem as shown in bold at Figure
56.

If these two steps are done correctly the user will see his own component in the
central panel of WhiBo GUI (Figure 4), and can use the GDT with the new RC.

Adding a new sub-problem is achieved in three steps. The first step is to create an
interface for the sub-problem, and define inputs and outputs for the sub-problem
as shown in bold at Figure 57.
The second step is to register the new sub-problem to enable using it through GUI
as shown in bold at Figure 58.

52

Finally, the user has to modify the existing GDT algorithm to utilize the newly
defined sub-problem. WhiBo is not only intended for use with decision-tree
algorithms, but can be extended to other component-based machine learning
algorithms.

package rs.fon.WhiBo.GDT.component.splitEvaluation;
public class MySplitEvaluation
extends AbstractSplitEvaluation {

@Parameter(defaultValue="0.05", minValue ="0",
maxValue="1")
private Double Alpha_Value;

@Override
public double evaluate(SplittedExampleSet
exampleSet)
{
/*
user implementation
for candidate split evaluation
*/
return splitEvaluation;

}

Figure 58 - Implementing a new RC

public class SplitEvaluation implements Subproblem {
PrivateString[] availablelmplementationClassNames

{

GainRatio.class.getName(),
Ginilndex.class.getName(),
InformationGain.class.getName(),
DistanceMeasure.class.getName(),
ChiSquare_FTest.class.getName(),
MysSplitEvaluation.class.getName();

}

|3

Figure 59 - Registering the new RC for a sub-problem

53

package
rs.fon.WhiBo.GDT.component.newSubproblem;
public interface newSubproblem {
public outputl newSubproblemMethod1(inputsl);
public output2 newSubproblemMethod1(inputs2);
t

Figure 60 - Defining a new sub-problem

WhiBo can be found at the following web page
http://code.google.com/p/WhiBo/. Data mining and machine learning
researchers are invited to join our efforts to exchange components of decision
trees and other machine learning algorithms in an open way based on the
proposed WhiBo platform, as to establish a standard for interchange of
components among decision tree based classification algorithms, as well as other
machine learning algorithms.

Package rs.fon.WhiBo.GDT.problem;
public class GenericTreeProblemBuilder {
public Problem buildProcess() {

Subproblem s2 = new PossibleSplit();
Subproblem s3 = new Split Evaluation();

Subproblem s7 = new UserDefinedSubproblem();
List”Subproblem” subproblems;
subproblems.add(s1);

subproblems.add(s2);

subproblems.add(s7);

Problem process = new GenericTreeProblem();
process.setProcessSteps(steps);

return process;

Figure 61 - Registering the new sub-problem

54

http://code.google.com/p/WhiBo/

Developer guide
In order to extend WhiBo there are several steps which needs to be done.

1. Since WhiBo is written in Java programming language, first step is to
download Eclipse (http://www.eclipse.org/downloads/).

2. When Eclipse is downloaded subversion support needs to be installed. We
recommend Subclipse, which can be found on
http://subclipse.tigris.org/serviets/ProjectProcess?pagelD=p4wYuA.
Installation of Subclipse is done in several steps:

1. Open Eclipse.
2. Select the Help > Install New Software menu option.

SE
idal Welcome

{7} Help Contents
7 Search
Dynamic Help

Key Assist... Ctrl+Shift+L
Tips and Tricks...
Cheat Sheets...

Eclipse Marketplace...
Check for Updates
Install Mew Software...

About Eclipse

Figure 62 - Installation of Subclipse

3. Click the Add button and set the Location field on
http://subclipse.tigris.org/update 1.8.x, and set name for example
Subclipse. Then click OK button.

55

http://www.eclipse.org/downloads/
http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA
http://subclipse.tigris.org/update_1.8.x

"8 Instal - e - G [

Available Software
Select a site or enter the location of a site, \Dl—
Work with: type or select a site - Add...

Find more software by working with the "Available Software Sites” preferences,

type filter text

Mame Version
[@) There is no site selected|

Name: Subclipse Local...
Location: http://subclipsetigris.org/update 1.8.x

SelectAll | | Deselect Al

@ Cancel]

Details
Show only the latest versions of available software Hide items that are already installed
Group items by category What is already installed?

[] Show only software applicable to target environment
Contact all update sites during install to find required software

@ < Back Next > Finish

Figure 63 - Adding Subclipse repository

4. Select Subclipse components and click Next.

U

. Select the | accept the terms of the license agreements radio button.
6. Click the Finish button.
7. Click Yes to restart Eclipse.

Eclipse will now have SVN Repository Exploring panel. If Eclipse don’t show this

panel at first it can be added by clicking Windows->Open Perspective->Other...,
then selecting SVN Repository Exploring option and click OK.

56

3. Checkout of WhiBo project is done in several steps:

1. Right Click a repository in the SVN Repositories panel, select New,
then Repository location....

5VM Repositories 23

Mew ¥ | [Repository Location...

qﬁh Refresh

Figure 64 - Adding new repository location

2. Insert https://whibo.googlecode.com/svn/trunk/ in URL text box.

Add a new 5VN Repository
Add a new SVM Repository to the SVM Repositories view

Location

1| MAhttp=/ whibo.googlecode.com/svn/trunk,/

Tired of typing in long URL's? Your repository provider might provide a plug-in that
would allow you to select your repository from a list.

Click here to see the list of available providers.

) Free Subversion Repository Hosting from CloudForge
Sign-up for CloudForge and get free Subversion repository hosting
with unlimited users and repositories, plus free agile tracker tools.

Finish | |

Figure 65 - Adding WhiBo repository location

3. Click Finish button.

57

https://whibo.googlecode.com/svn/trunk/

4. Right click on WhiBo repository in SVN Repositories panel.

5. Select the Checkout... option.

o | [] httpsi//whibo.googlecode.com/sun/trunk |
Mew]

Checkout...

@ Show History
Relocate...
qﬁh Refresh

) Discard location
History [El Console 3

lo conscles to display at this tir Properties

Build/update revision graph cache

Clear revision graph cache

Figure 66 — Checkout of WhiBo project (1)

6. Select the Check out as a project in the workspace option and enter
a project name.

Check Out As N
g VN
Select the method of check out and the revision to check out.

Choose how to check out folder trunk
() Check out as a project configured using the New Project Wizard

@ Check out as a project in the workspace

Project Name: Whch-l

Check out HEAD revision

Revision:

Depth: [Fully recursive hd

Dlgnore externals
[¥] Allow unversioned obstructions

<Back || Net> || Finish || Cancel |

Figure 67 — Checkout of WhiBo project (2)

58

7. Select workspace where you wish to save project.

0 cesvon s I - -t

| Check Qut As
Select the project location,

Use default workspace location

Location: | Cf/Users/Ivica/workspace

Next > Finish | [Cancel

Figure 68 - Selecting workspace location

8. Click Finish button.
9. WhiBo project will show up in Package Explorer panel.

4. Similarly, RapidMiner project needs to be imported as project. URL for
RapidMiner project is http://svn.code.sf.net/p/rapidminer/code. Currently,
RapidMiner version is called Unuk.

5. After importing RapidMiner project it needs to be referenced in WhiBo
project.

1. Right click on WhiBo project.
59

http://svn.code.sf.net/p/rapidminer/code

2. Click Properties.

3. Select Java Build Path on left side and then Project tab on central
panel.

£ properties for WhiBoPos

type filter text Java Build Path

Resource
Builders = Source | l=F Projects | =) Libraries | % Order and E]cpcr:t|
Java Build Path Required projects on the build path:

Java Code Style
Java Compiler
Java Editar
Javadoc Location

Edit...

Project References Remove
Refactoring History
Run/Debug Settings
Subwersion

Task Repository

Figure 69 - Importing RapidMiner project into WhiBo project

4. Click Add... button.

U

. Select proper RapidMiner version.
6. Click OK button on Project Selection panel.

7. Click OK button on Properties panel.

60

BEN Required Project Selecton

Select projects to add:

[& RapidMiner
] (= RapidMiner_Unuk
O & RapidMiner_Vega

| SelectAll || Deselectal |

Figure 70 - Selecting RapidMiner version

6. Open build.xml file of WhiBo project.

7. Make sure that fifth line contains proper RapidMiner project (in this case it
should be:

<property name="rm.dir" location="../RapidMiner_Unuk" />)

8. Right click on build.xml file and select Run as...->Ant Build. With this step
WhiBo extension is building in RapidMiner project, so it can be used in that
project.

Open Javadoc Wizard...

Debug As »

Run As ¥ | s 1 Ant Build Alt+Shift+X, Q
Team ¥ | i 2 Ant Build...

Compare With ' External Tools Configurations...

Replace With r [-

Figure 71 - Building WhiBo project

61

9. Right click on WhiBo project and select Run as...->Java Application.

Debug As [I

Run As k| E 1 Java Applet Alt+Shift+X, A

Tearn k| 3 2 Java Application Alt+5hift+X, |

Compare With k| Ju 3 IUnit Test Alt+5Shift+x, T
i k

Replace With Run Cenfigurations...

Restore from Local History...

Configure k

Figure 72 - Running WhiBo project

10.Select RapidMinerGUI class.

& Select Java Applicatio

Select type (T = any character, * = any String, TZ = TimeZone):

rapidminergui
Matching items:
ﬁﬁapidMinerGUI - com.ragidminer.gui

| B com.rapidminer.qui

®@

Figure 73 - Main class of WhiBo project

11.RapidMiner will start and WhiBo can be used.

62

For any information about configuration and extending WhiBo project you can
contact us on e-mails (which can be found on the website) or on forum (which is
also on the website).

63

http://whibo.fon.bg.ac.rs/joomla/index.php/whibo-project
http://whibo.fon.bg.ac.rs/joomla/index.php/forum

Appendix A

ID3 algorithm

This algorithm is the first algorithm of Ross Quinlan (Quinlan, 1986). It can only
work with categorical data. It uses information gain as a measure of split quality.
This evaluation measure is biased towards choosing attributes with more
categories.

(Quinlan 1993).

CART algorithm

This algorithm is proposed by Breiman et al, 1984. It is a classification and
regression tree which can work with both numerical and categorical data. We
analyzed only the classification tree.

CART uses for split evaluation three evaluation measures: Gini, Twoing and
Ordered Twoing for ordered categorical data. We analyzed only the Gini
evaluation measure which is the most frequently used measure.

CART produces only binary splits for categorical, as well as numerical data. CART
includes an algorithm for tree pruning, namely cost complexity pruning (CCP). The
generated CART model has the option to classify cases with missing attribute
values. This is achieved through surrogate splits, i.e. alternative split nodes that
are generated during tree growth and should be used as an replacement when
the original attribute value is missing.

C4.5 algorithm

The successor of ID3 algorithm (Quinlan, 1993) improves several aspects of the
original tree. It can work with numerical and categorical data. It produces
multiway splits for categorical data, and binary splits for numerical data.

It uses a less-biased split evaluation measure, the gain ratio. It includes options to

handle missing values (which we didn’t analyze), and three pruning algorithms
(reduced-error pruning, pessimistic-error pruning and error-based pruning).

64

CHAID algorithm

It was proposed by Kass, 1980. It uses the chi-square test to evaluate the quality
of a split. It works only with categorical attributes. Instead of branching a node on
all categories or binary, it tries to group similar categories in joint categories,
merging statistically significant categories together. It produces branches based
on these merged categories.

Distance measure

This split evaluation measure was proposed by (Mantaras, 1991). It is an unbiased
multiway evaluation measure. It is an improvement of information gain and gain
ratio (although gain ratio was proposed later).

Appendix B

Subproblem: Create split

Component Name: Binary (Subproblem: Create split - numerical)

1. Concept:

Description: This component divides a numerical attribute in two parts, < and >=
from a specific value. The split produced by this component are therefore binary.
Input: Decision table.

Output: Proposed split.

2. Context:

Application: It represents the easiest way to split numerical attributes. For now
only this component is provided for splitting numerical attributes in both
approaches.

3. Content: This component can be found in decision tree CART (Breiman 1984)
C4.5 (Quinlan 1993).

Example: All records that have value of attribute Humidity <=77.5 will be allocated
in left branch and others in right branch.

65

Hurnidity

== 77.500 > 77.500

Component Name: Binary (Subproblem: Create split - categorical)

1. Concept:

Description: This component groups categories of a categorical attribute in two
parts. All possible combinations of rearranging categories in two parts can be
produced by this component.

Input: Decision table.

Output: Proposed split.

2. Context:

Application: It represents a computationally demanding way to split categorical
attributes. This component, however, can influence producing more accurate
splits.

3. Content: This component can be found in decision tree CART (Breiman 1984).
Example: All records that have value of attribute Outlook = “Overcast” will be
allocated in left branch and others that have values Outlook = “Sunny, Rain” in
right branch

Oiutlook
= owvercast = sunny rain
k|
& Hurnidlity

66

Component Name: Multiway (Subproblem: Create split - categorical)

1. Concept:

Description: The component produces splits for categorical attributes that have as
many leaves as there are categories in an attribute.

Input: Decision table.

Output: Proposed split.

2. Context:

Application: It represents a computationally effective way of splitting categorical
attributes. This component can help discover more interpretable decision trees
when there is a few categories in attribute, while maintaining the tree accurate.

3. Content: This component can be found in decision tree C4.5 (Quinlan 1993).
Example: All records that have will be allocated in separate branch for every
category of attribute (for attribute Outlook there will be tree branches: overcast,
rain and sunny).

Outlook

= overcast = rain = sunny

yes Wind Humiclity

Component Name: Significant (Subproblem: Create split - categorical)
1. Concept:
Description: Groups similar categories into mergers that can produce significant
splits.
Input: Decision table with categorical input attributes and categorical output
attribute.
Optional:
Parameter for merging: Specifies the significance level (alpha)
merged categories have to have. The significance level of a merged

67

category must be greater than 0 and less than or equal to 1. To
prevent any merging of categories, specify a value of 1. The default
value is 0.05.

Parameter for splitting: Specifies the significance level (alpha) for
splitting merged categories. The value must be between 0 and 1. The
default value is 0.05. Because merging is done hierarchically it can
happen that some categories within a merged category are
statistically significant with another category in a merged category,
but haven’t been tested before for significance, because of the
hierarchical procedure of merging. It is, therefore, the step of
splitting that allows finding near-optimal grouped categories.

Output: Merged categories within input attributes.

2. Context:

Application: Can be used when it is important to join similar categories into a

merger categories. For categorial attributes with large number of categories this

way of grouping categories can produce more interpretable results.

3. Content:

Uses a method for grouping categorical attributes categories into merged

categories as described in (Kass 1980).

Example: Attribute Odor has 9 categories, and the records are allocated in 3

branches by the grouped categories: left branch contains records with a,l, central

branch with n and right branch with p,f,c,y,s,m.

odor

=al =n =pfeysm

Y .
spare-print-calor -

68

Subproblem: Evaluate split

Component Name: Information Gain (Subproblem: Evaluate Split)

1. Concept:

Description: Evaluates the quality of a split with the Information gain measure.
This measure is based on entropy calculation of an input attribute compared to
the output attribute. It measures which input attribute describes the output
attribute best, and thus reduces entropy.

Input: Split candidate.

Output: Best split.

2. Context:

Application: This measure is computationally demanding and is biased towards
choosing attributes with more categories. However, on certain datasets it can
produce most accurate results.

3. Content: This split evaluation measure is used in the ID3 algorithm (Quinlan
1986).

Component Name: Gain ratio (Subproblem: Evaluate Split)

1. Concept:

Description: Evaluates the quality of a split with the Gain ratio measure. This
measure is based on entropy calculation of an input attribute compared to the
output attribute and takes into account the number of categories in an attribute.
It measures which input attribute describes the output attribute best, and thus
reduces entropy.

Input: Split candidate.

Output: Best split.

2. Context:

Application: This measure is computationally demanding and is less biased
towards choosing attributes with more categories than Information Gain.
However, on certain datasets it can produce most accurate results.

3. Content: This split evaluation measure is used in the C4.5 algorithm (Quinlan
1993).

69

Component Name: Gini ratio (Subproblem: Evaluate Split)

1. Concept:

Description: Evaluates the quality of a split with the Gini ratio measure. This
measure is based on probability calculation of an input attribute compared to the
output attribute. It measures which input attribute describes the output attribute
best, and thus reduces impurity of a node. The purest node is chosen as the best
split.

Input: Split candidate.

Output: Best split.

2. Context:

Application: This measure is not computationally demanding. On certain datasets
it can produce most accurate results.

3. Content: This split evaluation measure is used in the CART algorithm (Breiman
1993).

Component Name: Distance measure (Subproblem: Evaluate Split)

1. Concept:

Description: Evaluates the quality of a split with the Distance measure. This
measure is an improvement of Information gain measure.

Input: Split candidate.

Output: Best split.

2. Context:

Application: This measure is computationally demanding and is unbiased towards
choosing attributes with more categories. It produces, in general, very accurate
results.

3. Content: This split evaluation measure is proposed in (Mantaras 1991) to
improve the Information gain measure.

Component Name: Chi-square test (Subproblem: Evaluate Split)
1. Concept:
Description: Evaluates the quality of a split with the chi-square test. It checks
whether the proposed split is statistically significant.
Input: Split candidate.
70

Output: Best split.

2. Context:

Application: This measure is biased towards choosing attributes with more
categories. It can produce, on some datasets, most accurate results.

3. Content: This split evaluation measure is used in the CHAID algorithm (Kass
1980).

Subproblem: Stop criteria

Component Name: Maximum tree depth (Subproblem: Stop criteria)

1. Concept:

Description: Stops growth of decision tree when the maximum tree depth has
been reached.

Input: Decision tree in progress, maximum tree depth.

Output: Built decision tree.

2. Context:

Application: This criteria should used when it is important to build trees that
shouldn’t have more than a specified depth. In some cases, this can prevent
overfitting.

3. Content: This stopping criterion is used in almost all decision tree classifiers.

Component Name: Minimum node size (Subproblem: Stop criteria)

1. Concept:

Description: Stops growth of decision tree on branches when there are not
enough cases for a node.

Input: Decision tree in progress, minimum node size.

Output: Built decision tree.

2. Context:

Application: This criteria should used when it is important to build trees that
should have nodes with a minimum number of cases. In some cases, this can
prevent overfitting.

3. Content: This stop criterion can be used in all decision tree classifiers.

71

Subproblem: Prune tree

Component Name: Pessimistic error pruning (PEP) (Subproblem: Prune tree)
1. Concept:

Description: This method uses a pessimistic criterion to decide which subtree to
replace with a node.

Input: Decision tree. Confidence (0, 0.5] If this value is closer to 0.5 more sever
pruning is performed.

Output: Pruned decision tree.

2. Context:

Application: Can be used to reduce the tree in order to get more accurate or more
understandable trees.

3. Content: This method is proposed in (Quinlan 1993).

Component Name: Minimum leaf size (Subproblem: Stop criteria)

1. Concept:

Description: Stops growth of decision tree on branches when there are not
enough cases for a leaf.

Input: Decision tree in progress, minimum leaf size.

Output: Built decision tree.

2. Context:

Application: This criteria should used when it is important to build trees that
should have leaves with a minimum number of cases. In some cases, this can
prevent overfitting.

3. Content: This pruning criterion can be used in all decision tree classifiers.

72

References

1. Asuncion A, Newman DJ (2007) UCI Machine Learning Repository,
University of California, School of Information and Computer Science.
[www.ics.uci.edu/~mlearn/MLRepository.html].

2. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and
Regression Trees, CRC Press

3. Kass GV (1980) An Exploratory Technique for Investigating Large Quantities
of Categorical Data, Applied Statistics, 29 (2), p 119-127

4. Loh WY, Shih YS (1997) Split selection methods for classification trees,
Statistica Sinica 7, p. 815-840

5. Mantaras RL (1991) A Distance-Based Attribute Selection Measure for
Decision Tree Induction, Machine Learning

6. Mierswa |, Wurst M, Klinkenberg R, Scholz M, Euler T (2006) YALE: Rapid
Prototyping for Complex Data Mining Tasks. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, ACM Press

7. Quinlan JR (1986) Induction of Decision Trees. Machine Learning 1, p. 81-
106

8. Quinlan JR (1993) C4.5 Programs for Machine Learning, Morgan Kaufmann

9. Sonnenburg S, Braun ML, Ong CS, Bengio S, Bottou L, Holmes G, LeCun Y,
Mueller KR, Pereira F, Rasmussen CE, Raetsch G, Schoelkopf B, Smola A
(2007) The Need for Open Source Software in Machine Learning, Journal of
Machine Learning Research 8, p. 2443-2466

10.Tracz W (1990). Where does reuse start?. ACM SIGSOFT Software
Engineering Notes 15:42-46

11.Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, MclLachlan GJ, Ng
A, Liu B, Yu PS, Zhou ZH, Steinbach M, Hand DJ, Steinberg D (2008) Top 10
algorithms in data mining, Knowledge information systems 14, p 1-37

73

